forked from sudan94/chat-pdf-hugginface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
54 lines (41 loc) · 1.63 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from dotenv import load_dotenv
import os
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS #facebook AI similarity search
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
def main():
load_dotenv()
st.set_page_config(page_title="Ask your PDF")
st.header("Ask Your PDF")
pdf = st.file_uploader("Upload your pdf",type="pdf")
if pdf is not None:
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# spilit ito chuncks
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
# create embedding
embeddings = HuggingFaceEmbeddings()
knowledge_base = FAISS.from_texts(chunks,embeddings)
user_question = st.text_input("Ask Question about your PDF:")
if user_question:
docs = knowledge_base.similarity_search(user_question)
llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":5,
"max_length":64})
chain = load_qa_chain(llm,chain_type="stuff")
response = chain.run(input_documents=docs,question=user_question)
st.write(response)
# st.write(chunks)
if __name__ == '__main__':
main()