Skip to content

Latest commit

 

History

History
165 lines (119 loc) · 5.38 KB

File metadata and controls

165 lines (119 loc) · 5.38 KB

Stable Diffusion in Docker

Runs the official Stable Diffusion release on Huggingface in a GPU accelerated Docker container.

./build.sh run 'An impressionist painting of a parakeet eating spaghetti in the desert'

An impressionist painting of a parakeet eating spaghetti in the desert 1 An impressionist painting of a parakeet eating spaghetti in the desert 2

./build.sh run --image parakeet_eating_spaghetti.png --strength 0.6 'Abstract art'

Abstract art 1 Abstract art 2

Before you start

By default, the pipeline uses the full model and weights which requires a CUDA capable GPU with 8GB+ of VRAM. It should take a few seconds to create one image. On less powerful GPUs you may need to modify some of the options; see the Examples section for more details. If you lack a suitable GPU you can set the option --device cpu instead.

Since it uses the official model, you will need to create a user access token in your Huggingface account. Save the user access token in a file called token.txt and make sure it is available when building the container.

Quickstart

The pipeline is managed using a single build.sh script. You must build the image before it can be run.

Build

Make sure your user access token is saved in a file called token.txt. The token content should begin with hf_...

To build:

./build.sh build  # or just ./build.sh

Run

Text-to-Image

To run:

./build.sh run 'Andromeda galaxy in a bottle'

Image-to-Image

First, copy an image to the input folder. Next, to run:

./build.sh run --image image.png 'Andromeda galaxy in a bottle'

Diffusion Inpainting

First, copy an image and an image mask to the input folder. White areas of the mask will be diffused and black areas will be kept untouched. Next, to run:

./build.sh run --model 'runwayml/stable-diffusion-inpainting' \
  --image image.png --mask mask.png 'Andromeda galaxy in a bottle'

Options

Some of the options from txt2img.py are implemented for compatibility:

  • --prompt [PROMPT]: the prompt to render into an image
  • --n_samples [N_SAMPLES]: number of images to create per run (default 1)
  • --n_iter [N_ITER]: number of times to run pipeline (default 1)
  • --H [H]: image height in pixels (default 512, must be divisible by 64)
  • --W [W]: image width in pixels (default 512, must be divisible by 64)
  • --scale [SCALE]: unconditional guidance scale (default 7.5)
  • --seed [SEED]: RNG seed for repeatability (default is a random seed)
  • --ddim_steps [DDIM_STEPS]: number of sampling steps (default 50)

Other options:

  • --attention-slicing: use less memory at the expense of inference speed (default is no attention slicing)
  • --device [DEVICE]: the cpu or cuda device to use to render images (default cuda)
  • --half: use float16 tensors instead of float32 (default float32)
  • --image [IMAGE]: the input image to use for image-to-image diffusion (default None)
  • --mask [MASK]: the input mask to use for diffusion inpainting (default None)
  • --model [MODEL]: the model used to render images (default is CompVis/stable-diffusion-v1-4)
  • --negative-prompt [NEGATIVE_PROMPT]: the prompt to not render into an image (default None)
  • --skip: skip safety checker (default is the safety checker is on)
  • --strength [STRENGTH]: diffusion strength to apply to the input image (default 0.75)
  • --token [TOKEN]: specify a Huggingface user access token at the command line instead of reading it from a file (default is a file)

Examples

These commands are both identical:

./build.sh run 'abstract art'
./build.sh run --prompt 'abstract art'

Set the seed to 42:

./build.sh run --seed 42 'abstract art'

Options can be combined:

./build.sh run --scale 7.0 --seed 42 'abstract art'

On systems with <8GB of GPU RAM, you can try mixing and matching options:

  • Make images smaller than 512x512 using --W and --H to decrease memory use and increase image creation speed
  • Use --half to decrease memory use but slightly decrease image quality
  • Use --attention-slicing to decrease memory use but also decrease image creation speed
  • Decrease the number of samples and increase the number of iterations with --n_samples and --n_iter to decrease overall memory use
  • Skip the safety checker with --skip to run less code
./build.sh run --W 256 --H 256 --half --attention-slicing --skip --prompt 'abstract art'

On Windows, if you aren't using WSL2 and instead use MSYS, MinGW, or Git Bash, prefix your commands with MSYS_NO_PATHCONV=1 (or export it beforehand):

MSYS_NO_PATHCONV=1 ./build.sh run --half --prompt 'abstract art'

Outputs

Model

The model and other files are cached in a volume called huggingface.

Images

The images are saved as PNGs in the output folder using the prompt text. The build.sh script creates and mounts this folder as a volume in the container.