-
Notifications
You must be signed in to change notification settings - Fork 10
/
train.py
394 lines (338 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
"""Train various variational auto-encoder models.
References
----------
https://arxiv.org/pdf/1312.6114v10.pdf
"""
import argparse
import datetime
import inspect
import os
import time
import numpy as np
import tensorflow as tf
try:
from tensorflow.python import control_flow_ops
except ImportError:
from tensorflow.python.ops import control_flow_ops
import restore
from models import *
from reconstructions import *
from loss import *
from datasets import binarized_mnist
def train(
image_width,
dim_x,
dim_z,
encoder_type,
decoder,
dataset,
learning_rate=0.0001,
optimizer=tf.train.AdamOptimizer,
loss=elbo_loss,
batch_size=100,
results_dir='results',
max_epochs=10,
n_view=10,
results_file=None,
bn=False,
**kwargs
):
saved_variables = kwargs.pop('saved_variables', None)
anneal_lr = kwargs.pop('anneal_lr', False)
learning_rate_temperature = kwargs.pop('learning_rate_temperature', None)
global_step = tf.Variable(0, trainable=False) # for checkpoint saving
on_epoch = tf.placeholder(tf.float32, name='on_epoch')
dt = datetime.datetime.now()
results_file = results_file if results_file is not None else '/{}_{:02d}-{:02d}-{:02d}'.format(dt.date(), dt.hour, dt.minute, dt.second)
results_dir += results_file
os.mkdir(results_dir)
# Get all the settings and save them.
with open(results_dir + '/settings.txt', 'w') as f:
args = inspect.getargspec(train).args
settings = [locals()[arg] for arg in args]
for s, arg in zip(settings, args):
setting = '{}: {}'.format(arg, s)
f.write('{}\n'.format(setting))
print(setting)
settings = locals()[inspect.getargspec(train).keywords]
for kw, val in settings.items():
setting = '{}: {}'.format(kw, val)
f.write('{}\n'.format(setting))
print(setting)
# Make the neural neural_networks
is_training = tf.placeholder(tf.bool)
if bn:
encoder_net = lambda x: nn(x, enc_dims, name='encoder', act=tf.nn.tanh, is_training=is_training)
else:
encoder_net = lambda x: nn(x, enc_dims, name='encoder', act=tf.nn.tanh, is_training=None)
encoder = encoder_type(encoder_net, dim_z, flow)
# Build computation graph and operations
x = tf.placeholder(tf.float32, [None, dim_x], 'x')
x_w = tf.placeholder(tf.float32, [None, dim_x], 'x_w')
e = tf.placeholder(tf.float32, (None, dim_z), 'noise')
z_params, z = encoder(x_w, e)
x_pred = decoder(z)
kl_weighting = 1.0 - tf.exp(-on_epoch / kl_annealing_rate) if kl_annealing_rate is not None else 1
monitor_functions = loss(x_pred, x, kl_weighting=kl_weighting, **z_params)
monitor_functions_sorted = sorted(monitor_functions.iteritems(), key=lambda x: x[0])
monitor_output_train = {name: [] for name in monitor_functions.iterkeys()}
monitor_output_valid = {name: [] for name in monitor_functions.iterkeys()}
monitor_function_names = [p[0] for p in monitor_functions_sorted]
monitor_function_list = [p[1] for p in monitor_functions_sorted]
train_loss, valid_loss = monitor_functions['train_loss'], monitor_functions['valid_loss']
out_op = x_pred
# Batch normalization stuff
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if update_ops:
updates = tf.group(*update_ops)
train_loss = control_flow_ops.with_dependencies([updates], train_loss)
# Optimizer with gradient clipping
lr = tf.Variable(learning_rate)
optimizer = optimizer(lr)
gvs = optimizer.compute_gradients(train_loss)
capped_gvs = [(tf.clip_by_norm(grad, 1), var) if grad is not None else (grad, var)
for grad, var in gvs]
train_op = optimizer.apply_gradients(capped_gvs)
# Make training and validation sets
training_data, validation_data = dataset['train'], dataset['valid']
n_train_batches, n_valid_batches = training_data.images.shape[0] / batch_size, validation_data.images.shape[0] / batch_size,
print 'Loaded training and validation data'
visualized, e_visualized = validation_data.images[:n_view], np.random.normal(0, 1, (n_view, dim_z))
# Make summaries
rec_summary = tf.image_summary("rec", vec2im(out_op, batch_size, image_width), max_images=10)
for fn_name, fn in monitor_functions.items():
tf.scalar_summary(fn_name, fn)
summary_op = tf.merge_all_summaries()
# Create a saver.
saver = tf.train.Saver(tf.all_variables())
# Create a session
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
# Use pre-trained weight values
if saved_variables is not None:
restore.set_variables(sess, saved_variables)
summary_writer = tf.train.SummaryWriter(results_dir, sess.graph)
samples_list = []
batch_counter = 0
best_validation_loss = 1e100
number_of_validation_failures = 0
feed_dict = {}
validation_losses, training_losses = [], []
for epoch in range(max_epochs):
feed_dict[on_epoch] = epoch
start_time = time.time()
l_t = 0
monitor_output_epoch = {name: 0 for name in monitor_function_names}
for _ in xrange(n_train_batches):
batch_counter += 1
feed_dict[x], feed_dict[x_w] = training_data.next_batch(batch_size, whitened=False)
feed_dict[e] = np.random.normal(0, 1, (batch_size, dim_z))
feed_dict[is_training] = True
output = sess.run([train_op, train_loss] + monitor_function_list, feed_dict=feed_dict)
l, monitor_output_batch = output[1], output[2:]
for name, out in zip(monitor_function_names, monitor_output_batch):
monitor_output_epoch[name] += out
if batch_counter % 100 == 0:
summary_str = sess.run(summary_op, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, batch_counter)
# Save the model checkpoint periodically.
if batch_counter % 1000 == 0 or epoch == max_epochs:
checkpoint_path = os.path.join(results_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=global_step)
l_t += l
l_t /= n_train_batches
for name in monitor_function_names:
monitor_output_train[name].append(monitor_output_epoch[name] / n_train_batches)
training_losses.append(l_t)
# Validation loop
l_v = 0
monitor_output_epoch = {name: 0 for name in monitor_function_names}
for _ in range(n_valid_batches):
feed_dict[x], feed_dict[x_w] = validation_data.next_batch(batch_size, whitened=False)
feed_dict[e] = np.random.normal(0, 1, (batch_size, dim_z))
feed_dict[is_training] = False
output = sess.run([valid_loss] + monitor_function_list, feed_dict=feed_dict)
l_v_batched, monitor_output_batch = output[0], output[1:]
for name, out in zip(monitor_function_names, monitor_output_batch):
monitor_output_epoch[name] += out
l_v += l_v_batched
l_v /= n_valid_batches
for name in monitor_function_names:
monitor_output_valid[name].append(monitor_output_epoch[name] / n_valid_batches)
validation_losses.append(l_v)
duration = time.time() - start_time
examples_per_sec = (n_valid_batches + n_train_batches) * batch_size * 1.0 / duration
print('Epoch: {:d}\t Weighted training loss: {:.2f}, Validation loss {:.2f} ({:.1f} examples/sec, {:.1f} sec/epoch)'.format(epoch, l, l_v, examples_per_sec, duration))
samples = sess.run([out_op], feed_dict={x: visualized, x_w: visualized, e: e_visualized, is_training: False})
samples = np.reshape(samples, (n_view, image_width, image_width))
samples_list.append(samples)
# show_samples(samples, image_width)
# Learning rate annealing
lr = lr / (1.0 + epoch * 1.0 / learning_rate_temperature) if learning_rate_temperature is not None else lr
if epoch % 100 == 0:
np.save(results_dir + '/validation_losses_{}.npy'.format(epoch), validation_losses)
np.save(results_dir + '/training_losses_{}.npy'.format(epoch), training_losses)
np.save(results_dir + '/sample_visualizations_{}.npy'.format(epoch), np.array(samples_list))
np.save(results_dir + '/real_visualizations_{}.npy'.format(epoch), np.reshape(visualized, (n_view,image_width, image_width)))
for name in monitor_function_names:
np.save(results_dir + '/{}_valid_{}.npy'.format(name, epoch), monitor_output_valid[name])
np.save(results_dir + '/{}_train_{}.npy'.format(name, epoch), monitor_output_train[name])
np.save(results_dir + '/validation_losses.npy', validation_losses)
np.save(results_dir + '/training_losses.npy', training_losses)
np.save(results_dir + '/sample_visualizations.npy', np.array(samples_list))
np.save(results_dir + '/real_visualizations.npy', np.reshape(visualized, (n_view,image_width, image_width)))
for name in monitor_function_names:
np.save(results_dir + '/{}_valid.npy'.format(name), monitor_output_valid[name])
np.save(results_dir + '/{}_train.npy'.format(name), monitor_output_train[name])
visualize = False
if visualize:
for samples in samples_list:
together = np.hstack((np.reshape(visualized, (n_view,image_width, image_width)), samples > 0.5))
plot_images_together(together)
sess.close()
def train_simple(
dim_x,
dim_z,
encoder,
decoder,
training_dataset,
validation_dataset=None,
learning_rate=0.0001,
optimizer=tf.train.AdamOptimizer,
batch_size=100,
max_epochs=10,
**kwargs):
print_every = kwargs.pop('print_every', 10)
# Set random seeds
seed = kwargs.pop('seed', 0)
np.random.seed(seed)
tf.set_random_seed(seed)
rec_err_fn = l2_loss if kwargs.pop('rec_err_type', '') == 'l2_loss' else cross_entropy
anneal_lr = kwargs.pop('anneal_lr', False)
# Build computation graph and operations
x = tf.placeholder(tf.float32, [None, dim_x], 'x')
e = tf.placeholder(tf.float32, (None, dim_z), 'noise')
z_params, z = encoder(x, e)
x_pred = decoder(z)
kl_weighting = 1
loss_op = elbo_loss(x_pred, x, kl_weighting=kl_weighting, rec_err_fn=rec_err_fn, **z_params)
out_op = x_pred
lr = tf.Variable(learning_rate)
train_op = optimizer(lr).minimize(loss_op)
# Make training and validation sets
n_train_batches = max(training_dataset.num_examples / batch_size, 1)
n_valid_batches = validation_dataset.num_examples / batch_size if validation_dataset is not None else 0
# Create a session
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
batch_counter = 0
best_validation_loss = 1e100
for epoch in range(max_epochs):
for _ in xrange(n_train_batches):
batch_counter += 1
x_ = training_dataset.next_batch(batch_size)
e_ = np.random.normal(0, 1, (x_.shape[0], dim_z))
feed_dict = {x: x_, e: e_}
_, l = sess.run([train_op, loss_op], feed_dict)
l_v = 0.0
if validation_dataset is not None:
for _ in range(n_valid_batches):
x_valid = validation_dataset.next_batch(batch_size)
e_valid = np.random.normal(0, 1, (batch_size, dim_z))
l_v_batched = sess.run(loss_op, feed_dict={x: x_valid, e: e_valid})
l_v += l_v_batched
l_v /= n_valid_batches
if l_v > best_validation_loss:
if anneal_lr:
lr /= 2
learning_rate /= 2
print "Annealing learning rate to {}".format(learning_rate)
else: best_validation_loss = l_v
if (epoch + 1) % print_every == 0:
print('Epoch: {:d}\t Training loss: {:.2f}'.format(epoch+1, l))
ops = {
'z': z,
'out': out_op,
'x': x,
'e': e
}
return ops, sess
if __name__ == '__main__':
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--basic', action='store_true')
group.add_argument('--nf', action='store_true')
group.add_argument('--iaf', action='store_true')
group.add_argument('--hf', action='store_true')
group.add_argument('--liaf', action='store_true')
parser.add_argument('--epochs', type=int, default=2000)
parser.add_argument('--anneal-lr', action='store_true')
parser.add_argument('--flow', type=int, default=1)
parser.add_argument('--lrt', type=int, default=100)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--pretrained-metagraph', default=None)
args = parser.parse_args()
# Load pretrained variables
if args.pretrained_metagraph is not None:
s = args.pretrained_metagraph
checkpoint_dir, metagraph_name = '/'.join(s.split('/')[:-1]), s.split('/')[-1]
saved_variables = restore.get_saved_variable_values(checkpoint_dir, metagraph_name)
else:
saved_variables = None
# Set random seeds
np.random.seed(args.seed)
tf.set_random_seed(args.seed)
# Results file
dt = datetime.datetime.now()
results_file = '/{}_{:02d}-{:02d}-{:02d}'.format(dt.date(), dt.hour, dt.minute, dt.second)
# TRAINING SETTINGS
dim_x, dim_z, enc_dims, dec_dims = 784, 40, [300, 300], [300, 300]
decoder_net = lambda z: nn(z, dec_dims, name='decoder', act=tf.nn.tanh)
flow = args.flow
bn = True
# ENCODER
if args.basic:
encoder_type = basic_encoder
results_file += '-basic'
if args.nf:
encoder_type = nf_encoder
results_file += '-NF-{}'.format(flow)
if args.iaf:
encoder_type = iaf_encoder
results_file += '-IAF-{}'.format(flow)
if args.hf:
encoder_type = hf_encoder
results_file += '-HF-{}'.format(flow)
if args.liaf:
encoder_type = linear_iaf_encoder
results_file += '-linIAF'
if args.pretrained_metagraph is not None:
results_file += '_pretrained'
decoder = basic_decoder(decoder_net, dim_x)
kl_annealing_rate = None
extra_settings = {
'flow': flow,
'kl annealing rate': kl_annealing_rate,
'anneal_lr': args.anneal_lr,
'bn': bn,
'enc_dims': enc_dims,
'learning_rate_temperature': args.lrt
}
# TRAINING
train(
image_width=28,
dim_x=dim_x,
dim_z=dim_z,
encoder_type=encoder_type,
decoder=decoder,
dataset=binarized_mnist(),
learning_rate=0.0002,
optimizer=tf.train.AdamOptimizer,
loss=elbo_loss,
batch_size=100,
results_dir='results',
results_file=results_file,
max_epochs=args.epochs,
saved_variables=saved_variables,
**extra_settings
)