-
Notifications
You must be signed in to change notification settings - Fork 82
/
min-char-rnn.py
200 lines (168 loc) · 7.51 KB
/
min-char-rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
## add comments by weixsong
## reference page [The Unreasonable Effectiveness of Recurrent Neural Networks](http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
## this is a 3 layers neuron network.
## input layer: one hot vector, dim: vocab * 1
## hidden layer: LSTM, hidden vector: hidden_size * 1
## output layer: Softmax, vocab * 1, the probabilities distribution of each character
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
# use set() to count the vacab size
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print 'data has %d characters, %d unique.' % (data_size, vocab_size)
# dictionary to convert char to idx, idx to char
char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { i:ch for i,ch in enumerate(chars) }
# hyperparameters
hidden_size = 100 # size of hidden layer of neurons
seq_length = 25 # number of steps to unroll the RNN for
learning_rate = 1e-1
# model parameters
## RNN/LSTM
## this is not LSTM, is the simple basic RNN
## # update the hidden state
## self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
## # compute the output vector
## y = np.dot(self.W_hy, self.h)
Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden
Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden
Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
bh = np.zeros((hidden_size, 1)) # hidden bias
by = np.zeros((vocab_size, 1)) # output bias
## compute loss, derivative
## cross-entropy loss is used
## actually, here the author use cross-entropy as error,
## but in the backpropagation the author use sum of squared error (Quadratic cost) to do back propagation.
## be careful about this trick.
## this is because the output layer is a linear layer.
## TRICK: Using the quadratic cost when we have linear neurons in the output layer, z[i] = a[i]
def lossFun(inputs, targets, hprev):
"""
inputs,targets are both list of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state
"""
xs, hs, ys, ps = {}, {}, {}, {}
## record each hidden state of
hs[-1] = np.copy(hprev)
loss = 0
# forward pass for each training data point
for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size, 1)) # encode in 1-of-k representation
xs[t][inputs[t]] = 1
## hidden state, using previous hidden state hs[t-1]
hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh)
## unnormalized log probabilities for next chars
ys[t] = np.dot(Why, hs[t]) + by
## probabilities for next chars, softmax
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))
## softmax (cross-entropy loss)
loss += -np.log(ps[t][targets[t], 0])
# backward pass: compute gradients going backwards
dWxh, dWhh, dWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[0])
for t in reversed(xrange(len(inputs))):
## compute derivative of error w.r.t the output probabilites
## dE/dy[j] = y[j] - t[j]
dy = np.copy(ps[t])
dy[targets[t]] -= 1 # backprop into y
## output layer doesnot use activation function, so no need to compute the derivative of error with regard to the net input
## of output layer.
## then, we could directly compute the derivative of error with regard to the weight between hidden layer and output layer.
## dE/dy[j]*dy[j]/dWhy[j,k] = dE/dy[j] * h[k]
dWhy += np.dot(dy, hs[t].T)
dby += dy
## backprop into h
## derivative of error with regard to the output of hidden layer
## derivative of H, come from output layer y and also come from H(t+1), the next time H
dh = np.dot(Why.T, dy) + dhnext
## backprop through tanh nonlinearity
## derivative of error with regard to the input of hidden layer
## dtanh(x)/dx = 1 - tanh(x) * tanh(x)
dhraw = (1 - hs[t] * hs[t]) * dh
dbh += dhraw
## derivative of the error with regard to the weight between input layer and hidden layer
dWxh += np.dot(dhraw, xs[t].T)
dWhh += np.dot(dhraw, hs[t-1].T)
## derivative of the error with regard to H(t+1)
## or derivative of the error of H(t-1) with regard to H(t)
dhnext = np.dot(Whh.T, dhraw)
for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
return loss, dWxh, dWhh, dWhy, dbh, dby, hs[len(inputs)-1]
## given a hidden RNN state, and a input char id, predict the coming n chars
def sample(h, seed_ix, n):
"""
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
"""
## a one-hot vector
x = np.zeros((vocab_size, 1))
x[seed_ix] = 1
ixes = []
for t in xrange(n):
## self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh)
## y = np.dot(self.W_hy, self.h)
y = np.dot(Why, h) + by
## softmax
p = np.exp(y) / np.sum(np.exp(y))
## sample according to probability distribution
ix = np.random.choice(range(vocab_size), p=p.ravel())
## update input x
## use the new sampled result as last input, then predict next char again.
x = np.zeros((vocab_size, 1))
x[ix] = 1
ixes.append(ix)
return ixes
## iterator counter
n = 0
## data pointer
p = 0
mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0
## main loop
while True:
# prepare inputs (we're sweeping from left to right in steps seq_length long)
if p + seq_length + 1 >= len(data) or n == 0:
# reset RNN memory
## hprev is the hiddden state of RNN
hprev = np.zeros((hidden_size, 1))
# go from start of data
p = 0
inputs = [char_to_ix[ch] for ch in data[p : p + seq_length]]
targets = [char_to_ix[ch] for ch in data[p + 1 : p + seq_length + 1]]
# sample from the model now and then
if n % 100 == 0:
sample_ix = sample(hprev, inputs[0], 200)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '---- sample -----'
print '----\n %s \n----' % (txt, )
# forward seq_length characters through the net and fetch gradient
loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
## author using Adagrad(a kind of gradient descent)
smooth_loss = smooth_loss * 0.999 + loss * 0.001
if n % 100 == 0:
print 'iter %d, loss: %f' % (n, smooth_loss) # print progress
# perform parameter update with Adagrad
## parameter update for Adagrad is different from gradient descent parameter update
## need to learn what is Adagrad exactly is.
## seems using weight matrix, derivative of weight matrix and a memory matrix, update memory matrix each iteration
## memory is the accumulation of each squared derivatives in each iteration.
## mem += dparam * dparam
for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
[dWxh, dWhh, dWhy, dbh, dby],
[mWxh, mWhh, mWhy, mbh, mby]):
mem += dparam * dparam
## learning_rate is adjusted by mem, if mem is getting bigger, then learning_rate will be small
## gradient descent of Adagrad
param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update
p += seq_length # move data pointer
n += 1 # iteration counter