-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathaudio_utils.py
59 lines (38 loc) · 1.3 KB
/
audio_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
import librosa
import librosa.filters
import numpy as np
from scipy import signal
from params import hparams
def preemphasis(x):
return signal.lfilter([1, -hparams.preemphasis], [1], x)
def spectrogram(y):
D = _stft(preemphasis(y))
S = _amp_to_db(np.abs(D)) - hparams.ref_level_db
return _normalize(S)
def melspectrogram(y):
D = _stft(preemphasis(y))
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hparams.ref_level_db
mel_spec = _normalize(S)
return mel_spec.T
def _stft(y):
n_fft, hop_length, win_length = _stft_parameters()
return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
def _stft_parameters():
n_fft = hparams.n_fft
hop_length = hparams.hop_length
win_length = hparams.win_length
return n_fft, hop_length, win_length
def _amp_to_db(x):
return 20 * np.log10(np.maximum(1e-5, x))
_mel_basis = None
def _linear_to_mel(spectrogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectrogram)
def _build_mel_basis():
n_fft = hparams.n_fft
return librosa.filters.mel(hparams.sample_rate, n_fft, n_mels=hparams.num_mels)
def _normalize(S):
return np.clip((S - hparams.min_level_db) / -hparams.min_level_db, 0, 1)