forked from microsoft/AutonomousDrivingCookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCooking.py
199 lines (158 loc) · 8.27 KB
/
Cooking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import random
import csv
from PIL import Image
import numpy as np
import pandas as pd
import sys
import os
import errno
from collections import OrderedDict
import h5py
from pathlib import Path
import copy
import re
def checkAndCreateDir(full_path):
"""Checks if a given path exists and if not, creates the needed directories.
Inputs:
full_path: path to be checked
"""
if not os.path.exists(os.path.dirname(full_path)):
try:
os.makedirs(os.path.dirname(full_path))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
def readImagesFromPath(image_names):
""" Takes in a path and a list of image file names to be loaded and returns a list of all loaded images after resize.
Inputs:
image_names: list of image names
Returns:
List of all loaded and resized images
"""
returnValue = []
for image_name in image_names:
im = Image.open(image_name)
imArr = np.asarray(im)
#Remove alpha channel if exists
if len(imArr.shape) == 3 and imArr.shape[2] == 4:
if (np.all(imArr[:, :, 3] == imArr[0, 0, 3])):
imArr = imArr[:,:,0:3]
if len(imArr.shape) != 3 or imArr.shape[2] != 3:
print('Error: Image', image_name, 'is not RGB.')
sys.exit()
returnIm = np.asarray(imArr)
returnValue.append(returnIm)
return returnValue
def splitTrainValidationAndTestData(all_data_mappings, split_ratio=(0.7, 0.2, 0.1)):
"""Simple function to create train, validation and test splits on the data.
Inputs:
all_data_mappings: mappings from the entire dataset
split_ratio: (train, validation, test) split ratio
Returns:
train_data_mappings: mappings for training data
validation_data_mappings: mappings for validation data
test_data_mappings: mappings for test data
"""
if round(sum(split_ratio), 5) != 1.0:
print("Error: Your splitting ratio should add up to 1")
sys.exit()
train_split = int(len(all_data_mappings) * split_ratio[0])
val_split = train_split + int(len(all_data_mappings) * split_ratio[1])
train_data_mappings = all_data_mappings[0:train_split]
validation_data_mappings = all_data_mappings[train_split:val_split]
test_data_mappings = all_data_mappings[val_split:]
return [train_data_mappings, validation_data_mappings, test_data_mappings]
def generateDataMapAirSim(folders):
""" Data map generator for simulator(AirSim) data. Reads the driving_log csv file and returns a list of 'center camera image name - label(s)' tuples
Inputs:
folders: list of folders to collect data from
Returns:
mappings: All data mappings as a dictionary. Key is the image filepath, the values are a 2-tuple:
0 -> label(s) as a list of double
1 -> previous state as a list of double
"""
all_mappings = {}
for folder in folders:
print('Reading data from {0}...'.format(folder))
current_df = pd.read_csv(os.path.join(folder, 'airsim_rec.txt'), sep='\t')
for i in range(1, current_df.shape[0] - 1, 1):
previous_state = list(current_df.iloc[i-1][['Steering', 'Throttle', 'Brake', 'Speed (kmph)']])
current_label = list((current_df.iloc[i][['Steering']] + current_df.iloc[i-1][['Steering']] + current_df.iloc[i+1][['Steering']]) / 3.0)
image_filepath = os.path.join(os.path.join(folder, 'images'), current_df.iloc[i]['ImageName']).replace('\\', '/')
# Sanity check
if (image_filepath in all_mappings):
print('Error: attempting to add image {0} twice.'.format(image_filepath))
all_mappings[image_filepath] = (current_label, previous_state)
mappings = [(key, all_mappings[key]) for key in all_mappings]
random.shuffle(mappings)
return mappings
def generatorForH5py(data_mappings, chunk_size=32):
"""
This function batches the data for saving to the H5 file
"""
for chunk_id in range(0, len(data_mappings), chunk_size):
# Data is expected to be a dict of <image: (label, previousious_state)>
# Extract the parts
data_chunk = data_mappings[chunk_id:chunk_id + chunk_size]
if (len(data_chunk) == chunk_size):
image_names_chunk = [a for (a, b) in data_chunk]
labels_chunk = np.asarray([b[0] for (a, b) in data_chunk])
previous_state_chunk = np.asarray([b[1] for (a, b) in data_chunk])
#Flatten and yield as tuple
yield (image_names_chunk, labels_chunk.astype(float), previous_state_chunk.astype(float))
if chunk_id + chunk_size > len(data_mappings):
raise StopIteration
raise StopIteration
def saveH5pyData(data_mappings, target_file_path):
"""
Saves H5 data to file
"""
chunk_size = 32
gen = generatorForH5py(data_mappings,chunk_size)
image_names_chunk, labels_chunk, previous_state_chunk = next(gen)
images_chunk = np.asarray(readImagesFromPath(image_names_chunk))
row_count = images_chunk.shape[0]
checkAndCreateDir(target_file_path)
with h5py.File(target_file_path, 'w') as f:
# Initialize a resizable dataset to hold the output
images_chunk_maxshape = (None,) + images_chunk.shape[1:]
labels_chunk_maxshape = (None,) + labels_chunk.shape[1:]
previous_state_maxshape = (None,) + previous_state_chunk.shape[1:]
dset_images = f.create_dataset('image', shape=images_chunk.shape, maxshape=images_chunk_maxshape,
chunks=images_chunk.shape, dtype=images_chunk.dtype)
dset_labels = f.create_dataset('label', shape=labels_chunk.shape, maxshape=labels_chunk_maxshape,
chunks=labels_chunk.shape, dtype=labels_chunk.dtype)
dset_previous_state = f.create_dataset('previous_state', shape=previous_state_chunk.shape, maxshape=previous_state_maxshape,
chunks=previous_state_chunk.shape, dtype=previous_state_chunk.dtype)
dset_images[:] = images_chunk
dset_labels[:] = labels_chunk
dset_previous_state[:] = previous_state_chunk
for image_names_chunk, label_chunk, previous_state_chunk in gen:
image_chunk = np.asarray(readImagesFromPath(image_names_chunk))
# Resize the dataset to accommodate the next chunk of rows
dset_images.resize(row_count + image_chunk.shape[0], axis=0)
dset_labels.resize(row_count + label_chunk.shape[0], axis=0)
dset_previous_state.resize(row_count + previous_state_chunk.shape[0], axis=0)
# Write the next chunk
dset_images[row_count:] = image_chunk
dset_labels[row_count:] = label_chunk
dset_previous_state[row_count:] = previous_state_chunk
# Increment the row count
row_count += image_chunk.shape[0]
def cook(folders, output_directory, train_eval_test_split):
""" Primary function for data pre-processing. Reads and saves all data as h5 files.
Inputs:
folders: a list of all data folders
output_directory: location for saving h5 files
train_eval_test_split: dataset split ratio
"""
output_files = [os.path.join(output_directory, f) for f in ['train.h5', 'eval.h5', 'test.h5']]
if (any([os.path.isfile(f) for f in output_files])):
print("Preprocessed data already exists at: {0}. Skipping preprocessing.".format(output_directory))
else:
all_data_mappings = generateDataMapAirSim(folders)
split_mappings = splitTrainValidationAndTestData(all_data_mappings, split_ratio=train_eval_test_split)
for i in range(0, len(split_mappings), 1):
print('Processing {0}...'.format(output_files[i]))
saveH5pyData(split_mappings[i], output_files[i])
print('Finished saving {0}.'.format(output_files[i]))