API Reference¶
+-
+
-
+class spotiflow.model.spotiflow.Spotiflow(config: SpotiflowModelConfig | None =
None
)¶
+ Supervised spot detector using a multi-stage neural network as a backbone for +feature extraction followed by resolution-dependent post-processing modules +to allow loss computation and optimization at different resolution levels.
+-
+
-
+fit(train_images: Sequence[ndarray], train_spots: Sequence[ndarray], val_images: Sequence[ndarray], val_spots: Sequence[ndarray], augment_train: bool | Pipeline =
True
, save_dir: str | None =None
, train_config: dict | SpotiflowTrainingConfig | None =None
, device: 'auto' | 'cpu' | 'cuda' | 'mps' ='auto'
, logger: 'none' | 'tensorboard' | 'wandb' ='tensorboard'
, number_of_devices: int | None =1
, num_workers: int | None =0
, callbacks: Sequence[Callback] | None =None
, deterministic: bool | None =True
, benchmark: bool | None =False
, **dataset_kwargs)¶
+ Train a Spotiflow model.
+-
+
- Parameters:¶ +
-
+
- train_images : Sequence[np.ndarray]¶
training images
+
+- train_spots : Sequence[np.ndarray]¶
training spots
+
+- val_images : Sequence[np.ndarray]¶
validation images
+
+- val_spots : Sequence[np.ndarray]¶
validation spots
+
+- augment_train : Union[bool, AugmentationPipeline]¶
whether to augment the training data. Defaults to True.
+
+- save_dir : Optional[str], optional¶
directory to save the model to. Must be given if no checkpoint logger is given as a callback. Defaults to None.
+
+- train_config : Optional[SpotiflowTrainingConfig], optional¶
training config. If not given, will use the default config. Defaults to None.
+
+- device : Literal["cpu", "cuda", "mps"], optional¶
computing device to use. Can be “cpu”, “cuda”, “mps”. Defaults to “cpu”.
+
+- logger : Optional[pl.loggers.Logger], optional¶
logger to use. Defaults to “tensorboard”.
+
+- number_of_devices : Optional[int], optional¶
number of accelerating devices to use. Only applicable to “cuda” acceleration. Defaults to 1.
+
+- num_workers : Optional[int], optional¶
number of workers to use for data loading. Defaults to 0 (main process only).
+
+- callbacks : Optional[Sequence[pl.callbacks.Callback]], optional¶
callbacks to use during training. Defaults to no callbacks.
+
+- deterministic : Optional[bool], optional¶
whether to use deterministic training. Set to True for deterministic behaviour at a cost of performance. Defaults to True.
+
+- benchmark : Optional[bool], optional¶
whether to use benchmarking. Set to False for deterministic behaviour at a cost of performance. Defaults to False.
+
+- **dataset_kwargs¶
additional arguments to pass to the SpotsDataset class. Defaults to no additional arguments.
+
+
+
-
+
-
+classmethod from_folder(pretrained_path: str, inference_mode=
True
, which: str ='best'
, map_location: 'auto' | 'cpu' | 'cuda' | 'mps' ='auto'
) Self ¶
+ Load a pretrained model.
+-
+
- Parameters:¶ +
-
+
- pretrained_path : str¶
path to the model folder
+
+- inference_mode : bool, optional¶
whether to set the model in eval mode. Defaults to True.
+
+- which : str, optional¶
which checkpoint to load. Defaults to “best”.
+
+- map_location : str, optional¶
device string to load the model to. Defaults to ‘auto’ (hardware-based).
+
+
+- Returns:¶ +
loaded model
+
+- Return type:¶ +
Self
+
+
-
+
-
+classmethod from_pretrained(pretrained_name: str, inference_mode: bool =
True
, which: str ='best'
, map_location: 'auto' | 'cpu' | 'cuda' | 'mps' ='auto'
, cache_dir: Path | str | None =None
, **kwargs) Self ¶
+ Load a pretrained model with given name
+-
+
- Parameters:¶ +
-
+
- pretrained_name : str¶
name of the pretrained model to be loaded
+
+- inference_mode : bool, optional¶
whether to set the model in eval mode. Defaults to True.
+
+- which : str, optional¶
which checkpoint to load. Defaults to “best”.
+
+- map_location : str, optional¶
device string to load the model to. Defaults to ‘auto’ (hardware-based).
+
+- cache_dir : Optional[Union[Path, str]], optional¶
directory to cache the model. Defaults to None. If None, will use the default cache directory (given by the env var SPOTIFLOW_CACHE_DIR if set, otherwise ~/.spotiflow).
+
+
+- Returns:¶ +
loaded model
+
+- Return type:¶ +
Self
+
+
-
+
-
+load(path: str, which: 'best' | 'last' =
'best'
, inference_mode: bool =True
, map_location: str ='cuda'
) None ¶
+ Load a model from disk.
+-
+
- Parameters:¶ +
-
+
- path : str¶
folder to load the model from
+
+- which : Literal['best', 'last'], optional¶
which checkpoint to load. Defaults to “best”.
+
+- inference_mode : bool, optional¶
whether to set the model in eval mode. Defaults to True.
+
+- map_location : str, optional¶
device string to load the model to. Defaults to ‘cuda’.
+
+
+
-
+
-
+optimize_threshold(val_ds: Dataset, cutoff_distance: int =
3
, min_distance: int =1
, exclude_border: bool =False
, threshold_range: tuple[float, float] =(0.3, 0.7)
, niter: int =11
, batch_size: int =1
, device: device | 'auto' | 'cpu' | 'cuda' | 'mps' | None =None
, subpix: bool | None =None
) None ¶
+ -
+
- Optimize the probability threshold on an annotated dataset.
The metric used to optimize is the F1 score.
+
+
-
+
- Parameters:¶ +
-
+
- val_ds : torch.utils.data.Dataset¶
dataset to optimize on
+
+- cutoff_distance : int, optional¶
distance tolerance considered for points matching. Defaults to 3.
+
+- min_distance : int, optional¶
Minimum distance between spots for NMS. Defaults to 1.. Defaults to 2.
+
+- exclude_border : bool, optional¶
Whether to exclude spots at the border. Defaults to False.
+
+- threshold_range : Tuple[float, float], optional¶
Range of thresholds to consider. Defaults to (.3, .7).
+
+- niter : int, optional¶
number of iterations for both coarse- and fine-grained search. Defaults to 11.
+
+- batch_size : int, optional¶
batch size to use. Defaults to 2.
+
+- device : Optional[Union[torch.device, Literal["auto", "cpu", "cuda", "mps"]]], optional¶
computing device to use. If None, will infer from model location. If “auto”, will infer from available hardware. Defaults to None.
+
+- subpix : Optional[bool], optional¶
whether to use the stereographic flow to compute subpixel localization. If None, will deduce from the model configuration. Defaults to None.
+
+
+
-
+
-
+predict(img: ndarray | Array, prob_thresh: float | None =
None
, n_tiles: tuple[int, int] =(1, 1)
, min_distance: int =1
, exclude_border: bool =False
, scale: int | None =None
, subpix: bool | int | None =None
, peak_mode: 'skimage' | 'fast' ='fast'
, normalizer: Callable | 'auto' | None ='auto'
, verbose: bool =True
, progress_bar_wrapper: Callable | None =None
, device: device | 'auto' | 'cpu' | 'cuda' | 'mps' | None =None
, distributed_params: dict | None =None
) tuple[ndarray, SimpleNamespace] ¶
+ Predict spots in an image.
+-
+
- Parameters:¶ +
-
+
- img : Union[np.ndarray, da.Array]¶
input image
+
+- prob_thresh : Optional[float], optional¶
Probability threshold for peak detection. If None, will load the optimal one. Defaults to None.
+
+- n_tiles : Tuple[int, int], optional¶
Number of tiles to split the image into. Defaults to (1,1).
+
+- min_distance : int, optional¶
Minimum distance between spots for NMS. Defaults to 1.
+
+- exclude_border : bool, optional¶
Whether to exclude spots at the border. Defaults to False.
+
+- scale : Optional[int], optional¶
Scale factor to apply to the image. Defaults to None.
+
+- subpix : bool, optional¶
Whether to use the stereographic flow to compute subpixel localization. If None, will deduce from the model configuration. Defaults to None.
+
+- peak_mode : str, optional¶
Peak detection mode (can be either “skimage” or “fast”, which is a faster custom C++ implementation). Defaults to “fast”.
+
+- normalizer : Optional[Union[Literal["auto"], callable]], optional¶
Normalizer to use. If None, will use the default normalizer. Defaults to “auto” (percentile-based normalization with p_min=1, p_max=99.8).
+
+- verbose : bool, optional¶
Whether to print logs and progress. Defaults to True.
+
+- progress_bar_wrapper : Optional[callable], optional¶
Progress bar wrapper to use. Defaults to None.
+
+- device : Optional[Union[torch.device, Literal["auto", "cpu", "cuda", "mps"]]], optional¶
computing device to use. If None, will infer from model location. If “auto”, will infer from available hardware. Defaults to None.
+
+
+- Returns:¶ +
Tuple of (points, details). Points are the coordinates of the spots. Details is a namespace containing the spot-wise probabilities (prob), the heatmap (heatmap), the stereographic flow (flow), the 2D local offset vector field (subpix) and the spot intensities (intens).
+
+- Return type:¶ +
Tuple[np.ndarray, SimpleNamespace]
+
+
-
+
-
+save(path: str, which: 'best' | 'last' =
'best'
, update_thresholds: bool =False
) None ¶
+ Save the model to disk.
+ +
-
+fit(train_images: Sequence[ndarray], train_spots: Sequence[ndarray], val_images: Sequence[ndarray], val_spots: Sequence[ndarray], augment_train: bool | Pipeline =
-
+
-
+class spotiflow.model.config.SpotiflowModelConfig(backbone: 'resnet' | 'unet' | 'unet_res' =
'unet'
, in_channels: int =1
, out_channels: int =1
, initial_fmaps: int =32
, fmap_inc_factor: Number =2
, n_convs_per_level: int =3
, levels: int =4
, downsample_factor: int =2
, kernel_size: int =3
, padding: int | str ='same'
, mode: 'direct' | 'fpn' | 'slim' ='slim'
, background_remover: bool =False
, compute_flow: bool =True
, batch_norm: bool =True
, downsample_factors: tuple[tuple[int, int]] | None =None
, kernel_sizes: tuple[tuple[int, int]] | None =None
, dropout: float =0.0
, sigma: Number =1.0
, is_3d: bool =False
, grid: int | tuple[int, int, int] =(1, 1, 1)
, **kwargs)¶
+
-
+
-
+class spotiflow.model.config.SpotiflowTrainingConfig(crop_size: int | tuple[int, int] | tuple[int, int, int] =
512
, smart_crop: bool =False
, heatmap_loss_f: str ='bce'
, flow_loss_f: str ='l1'
, loss_levels: int | None =None
, num_train_samples: int | None =None
, pos_weight: Number =10.0
, lr: float =0.0003
, optimizer: str ='adamw'
, batch_size: int =4
, lr_reduce_patience: int =10
, num_epochs: int =200
, finetuned_from: str | None =None
, early_stopping_patience: int =0
, crop_size_depth: int =32
, **kwargs)¶
+
-
+
-
+class spotiflow.data.spots.SpotsDataset(images: Sequence[ndarray], centers: Sequence[ndarray], augmenter: Callable | None =
None
, downsample_factors: Sequence[int] =(1,)
, sigma: float =1.0
, mode: str ='max'
, compute_flow: bool =False
, image_files: Sequence[str] | None =None
, normalizer: 'auto' | Callable | None ='auto'
, add_class_label: bool =True
, grid: Sequence[int] | None =None
)¶
+ Base spot dataset class instantiated with loaded images and centers.
+-
+
-
+__init__(images: Sequence[ndarray], centers: Sequence[ndarray], augmenter: Callable | None =
None
, downsample_factors: Sequence[int] =(1,)
, sigma: float =1.0
, mode: str ='max'
, compute_flow: bool =False
, image_files: Sequence[str] | None =None
, normalizer: 'auto' | Callable | None ='auto'
, add_class_label: bool =True
, grid: Sequence[int] | None =None
)¶
+ Constructor
+-
+
- Parameters:¶ +
-
+
- images : Sequence[np.ndarray]¶
Sequence of images.
+
+- centers : Sequence[np.ndarray]¶
Sequence of center coordinates.
+
+- augmenter : Optional[Callable], optional¶
Augmenter function. If given, function arguments should two (first image, second spots). Defaults to None.
+
+- downsample_factors : Sequence[int], optional¶
Downsample factors. Defaults to (1,).
+
+- sigma : float, optional¶
Sigma of Gaussian kernel to generate heatmap. Defaults to 1.
+
+- mode : str, optional¶
Mode of heatmap generation. Defaults to “max”.
+
+- compute_flow : bool, optional¶
Whether to compute flow from centers. Defaults to False.
+
+- image_files : Optional[Sequence[str]], optional¶
Sequence of image filenames. If the dataset was not constructed from a folder, this will be None. Defaults to None.
+
+- normalizer : Union[Literal["auto"], Callable, None], optional¶
Normalizer function. Defaults to “auto” (percentile-based normalization with p_min=1 and p_max=99.8).
+
+
+
-
+
- +property augmenter : Callable¶ +
Return augmenter function.
+ +
-
+
- +property centers : Sequence[ndarray]¶ +
Return centers of spots in dataset.
+ +
-
+
-
+classmethod from_folder(path: Path | str, augmenter: Callable | None =
None
, downsample_factors: Sequence[int] =(1,)
, sigma: float =1.0
, image_extensions: Sequence[str] =('tif', 'tiff', 'png', 'jpg', 'jpeg')
, mode: str ='max'
, max_files: int | None =None
, compute_flow: bool =False
, normalizer: Callable | 'auto' | None ='auto'
, random_state: int | None =None
, add_class_label: bool =True
, grid: Sequence[int] | None =None
) Self ¶
+ Build dataset from folder. Images and centers are loaded from disk and normalized.
+-
+
- Parameters:¶ +
-
+
- path : Union[Path, str]¶
Path to folder containing images (with given extensions) and centers.
+
+- augmenter : Callable¶
Augmenter function.
+
+- downsample_factors : Sequence[int], optional¶
Downsample factors. Defaults to (1,).
+
+- sigma : float, optional¶
Sigma of Gaussian kernel to generate heatmap. Defaults to 1.
+
+- image_extensions : Sequence[str], optional¶
Image extensions to look for in images. Defaults to (“tif”, “tiff”, “png”, “jpg”, “jpeg”).
+
+- mode : str, optional¶
Mode of heatmap generation. Defaults to “max”.
+
+- max_files : Optional[int], optional¶
Maximum number of files to load. Defaults to None (all of them).
+
+- compute_flow : bool, optional¶
Whether to compute flow from centers. Defaults to False.
+
+- normalizer : Optional[Union[Callable, Literal["auto"]]], optional¶
Normalizer function. Defaults to “auto” (percentile-based normalization with p_min=1 and p_max=99.8).
+
+- random_state : Optional[int], optional¶
Random state used when shuffling file names when “max_files” is not None. Defaults to None.
+
+
+- Returns:¶ +
Dataset instance.
+
+- Return type:¶ +
Self
+
+
-
+
- +property image_files : Sequence[str]¶ +
Return image filenames with the same order as in the dataset.
+ +
-
+
- +property images : Sequence[ndarray]¶ +
Return images in dataset.
+ +
-
+__init__(images: Sequence[ndarray], centers: Sequence[ndarray], augmenter: Callable | None =
-
+
-
+spotiflow.utils.get_data(path: Path | str, normalize: bool =
True
, include_test: bool =False
, is_3d: bool =False
) tuple[ndarray, ndarray, ndarray, ndarray] ¶
+ Get data from a given path. The path should contain a ‘train’ and ‘val’ folder.
+ +
-
+
-
+spotiflow.utils.normalize(x: ndarray, pmin: float =
1.0
, pmax: float =99.8
, subsample: int =1
, clip: bool =False
, ignore_val: int | float | None =None
) ndarray ¶
+ Normalizes (percentile-based) a 2d image with the additional option to ignore a value. The normalization is done as follows:
+x = (x - I_{p_{min}}) / (I_{p_{max}} - I_{p_{min}})
+where I_{p_{min}} and I_{p_{max}} are the pmin and pmax percentiles of the image intensity, respectively.
+-
+
- Parameters:¶ +
-
+
- x : np.ndarray¶
Image to be normalized
+
+- pmin : float, optional¶
Minimum percentile. Defaults to 1..
+
+- pmax : float, optional¶
Maximum percentile. Defaults to 99.8.
+
+- subsample : int, optional¶
Subsampling factor for percentile calculation. Defaults to 1.
+
+- clip : bool, optional¶
Whether to clip the normalized image. Defaults to False.
+
+- ignore_val : Optional[Union[int, float]], optional¶
Value to be ignored. Defaults to None.
+
+
+- Returns:¶ +
Normalized image
+
+- Return type:¶ +
np.ndarray
+
+
-
+
-
+spotiflow.utils.read_coords_csv(fname: str, add_class_column: bool =
False
) ndarray ¶
+ Parses a csv file and returns correctly ordered points array
+ +
-
+
- +spotiflow.utils.write_coords_csv(pts: ndarray, fname: Path | str) None ¶ +
Writes points in a NumPy array to a CSV file
+ +
-
+
- +spotiflow.sample_data.test_image_hybiss_2d()¶ +
Single test HybISS image from the Spotiflow paper (doi.org/10.1101/2024.02.01.578426)
+
-
+
- +spotiflow.sample_data.test_image_synth_3d()¶ +
Single synthetic volumetric stack from the Spotiflow paper (doi.org/10.1101/2024.02.01.578426)
+
-
+
- +spotiflow.sample_data.test_image_terra_2d()¶ +
Single test Terra frame from the Spotiflow paper (doi.org/10.1101/2024.02.01.578426)
+