-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain_depts.py
230 lines (186 loc) · 10 KB
/
main_depts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch import optim
import argparse
import random
from pathlib import Path
import datetime
from utils import TimeseriesSampler, to_tensor, warm_PM_parameters_perK
from utils import default_device, mape_loss, mase_loss, smape_2_loss
from models import PeriodicityModule, depts_expansion_general
from datasets.electricity import ElectricityDataset, ElectricityMeta
from datasets.traffic import TrafficDataset, TrafficMeta
from datasets.caiso import CaisoDataset, CaisoMeta
from datasets.nordpool import ProductionDataset, ProductionMeta
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def __loss_fn(loss_name: str):
def loss(x, freq, forecast, target, target_mask):
if loss_name == 'MAPE':
return mape_loss(forecast, target, target_mask)
elif loss_name == 'MASE':
return mase_loss(x, freq, forecast, target, target_mask)
elif loss_name == 'SMAPE':
return smape_2_loss(forecast, target, target_mask)
else:
raise Exception(f'Unknown loss function: {loss_name}')
return loss
parser = argparse.ArgumentParser(description='Parameters')
# choosing data and split
parser.add_argument('--data', type=str, default='')
parser.add_argument('--split', type=str, default='')
# choosing general setting
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--lookback', type=int, default=2) # 2, 3, 4, 5, 6, 7
parser.add_argument('--loss', type=str, default='SMAPE') # SMAPE
parser.add_argument('--output', type=str, default='') # output file dirs
# choose parameters
parser.add_argument('--J', type=int, default=8) # J valid periods: 4, 8, 16, 32
parser.add_argument('--maxK', type=int, default=128) # in top-K candidate periods to select J valid periods
parser.add_argument('--period_layers', type=int, default=1) # num of NN layers in periodic blocks
args = parser.parse_args()
DATA_CONFIG = {
"electricity":{"data":ElectricityDataset,"meta":ElectricityMeta, "fftwarmlen": 24*10,
'deepar':"2014-08-31 23","last":"2014-12-25 00",
"lr":0.001, "history_size":10,"test_windows":7, "iters":72000, "dump_iters":[72000]},
"traffic":{"data":TrafficDataset,"meta":TrafficMeta, "fftwarmlen": 24*30*2,
'deepar':"2008-06-14 23", "last":"2009-03-24 00",
"lr":0.001,"history_size": 10,"test_windows":7, "iters":24000, "dump_iters":[12000]},
"caiso":{"data":CaisoDataset, "meta":CaisoMeta, "fftwarmlen": 24*30*24,
"last18months":"2020-01-01 00", "last15months":"2020-04-01 00",
"last12months":"2020-07-01 00", "last9months":"2020-10-01 00",
"history_size":30*24,"test_windows":7,"lr":0.001,"iters":4000, "dump_iters":[4000]},
"product":{"data":ProductionDataset, "meta":ProductionMeta, "fftwarmlen": 24*30*24,
"last12months":"2020-01-01 00","last9months":"2020-04-01 00",
"last6months":"2020-07-01 00", "last3months":"2020-10-01 00",
"history_size":30*24,"test_windows":7,"lr":1e-6,"iters":12000, "dump_iters":[12000]},
}
# Set parameters
setup_seed(args.seed)
data_name = args.data
split_name = args.split
lookback = args.lookback
loss_name = args.loss
OUTPUT_DIR = args.output
maxK, J = args.maxK, args.J
period_layers = args.period_layers
EM_learning_rate = DATA_CONFIG[data_name]['lr']
sum_iterations = DATA_CONFIG[data_name]['iters']
dump_iters = DATA_CONFIG[data_name]['dump_iters']
history_size = DATA_CONFIG[data_name]['history_size']
fftwarmlen = DATA_CONFIG[data_name]['fftwarmlen']
PM_learning_rate = 5e-7
test_windows = 7
generic_layer_size, generic_layers, generic_stacks = 512, 4, 30
batch_size = 1024
dataset = DATA_CONFIG[data_name]['data'].load()
split_date = DATA_CONFIG[data_name][split_name]
horizon = DATA_CONFIG[data_name]['meta'].horizon
frequency = DATA_CONFIG[data_name]['meta'].frequency
input_size = lookback * horizon
if data_name == 'electricity' or data_name == 'traffic':
training_set, test_set = dataset.split_by_date(split_date)
else:
training_set, test_set = dataset.split_by_date(split_date, False)
training_values = training_set.values.astype('float64')
test_values = test_set.values.astype('float64')
print("dataset reading, done!")
# fft transform is sensitive to data scale, we do a simple scaling for traffic dataset
# during test, the predicted values are recovered to raw scale
if data_name == 'traffic':
training_values, test_values = map(lambda x:x*100000,(training_values, test_values))
training_sampler = TimeseriesSampler(timeseries=training_values, insample_size=input_size,
outsample_size=horizon, window_sampling_limit=history_size * horizon)
iter_training_sampler = iter(training_sampler)
# parameters init for Periodicity Module
fft_warm_point = training_values.shape[1] - fftwarmlen
all_a, all_p, all_f, all_mean, all_Kmask = warm_PM_parameters_perK(training_values, fft_warm_point, maxK, J)
PM = PeriodicityModule(all_a=all_a, all_p=all_p, all_f=all_f, all_mean=all_mean).to(default_device())
all_Kmask = to_tensor(all_Kmask)
PM_optimizer = optim.Adam(PM.parameters(), lr=PM_learning_rate)
print("PM init, done!")
# parameters init for Expansion Module
EM = depts_expansion_general(input_size=input_size, output_size=horizon, layer_size=generic_layer_size, stacks=generic_stacks,
local_layers=generic_layers, period_layers=period_layers, num_series=training_values.shape[0]).to(default_device())
EM_optimizer = optim.Adam(EM.parameters(), lr=EM_learning_rate)
print("EM init, done!")
training_loss_fn = __loss_fn(loss_name)
lr_decay_step = sum_iterations // 3
if lr_decay_step == 0:
lr_decay_step = 1
# begin training
training_loss_log = []
print("start", split_name)
for i in range(sum_iterations + 1):
if i % 1000 == 0:
print(i, datetime.datetime.now())
PM.train()
EM.train()
x, x_mask, y, y_mask, x_timestamp, y_timestamp, ids = map(to_tensor, next(iter_training_sampler))
EM_optimizer.zero_grad()
PM_optimizer.zero_grad()
batchKmask = all_Kmask.index_select(0, ids.long().view(-1))
x_z, y_z = PM(x_timestamp, ids.long(), batchKmask), PM(y_timestamp, ids.long(), batchKmask)
forecast, _, _ = EM(x, x_z, x_mask, y_z, ids)
training_loss = training_loss_fn(x, ElectricityMeta.frequency, forecast, y, y_mask)
training_loss_log.append(training_loss.item())
if np.isnan(float(training_loss)):
break
training_loss.backward()
torch.nn.utils.clip_grad_norm_(EM.parameters(), 1.0)
EM_optimizer.step()
for param_group in EM_optimizer.param_groups:
param_group["lr"] = EM_learning_rate * 0.5 ** (i // lr_decay_step)
torch.nn.utils.clip_grad_norm_(PM.parameters(), 1.0)
PM_optimizer.step()
for param_group in PM_optimizer.param_groups:
param_group["lr"] = PM_learning_rate * 0.5 ** (i // lr_decay_step)
if i in dump_iters:
# Build rolling forecasts
# We call periodic block output as global_forecasts
# We call local block output as local_forecasts
forecasts = []
global_forecasts = []
local_forecasts = []
z_outputs = []
PM.eval()
EM.eval()
with torch.no_grad():
for time in range(test_windows):
window_input_set = np.concatenate([training_values, test_values[:, :time * horizon]],axis=1)
input_set = TimeseriesSampler(timeseries=window_input_set, insample_size=input_size, outsample_size=horizon,
window_sampling_limit=int(history_size * horizon))
x, x_mask, x_timestamp, y_timestamp, ids = map(to_tensor, input_set.last_insample_window())
x_z, y_z = PM(x_timestamp, ids.long(), all_Kmask), PM(y_timestamp, ids.long(), all_Kmask)
window_z = y_z.cpu().detach().numpy()
window_forecast, window_global, window_local = map(lambda x: x.cpu().detach().numpy(), EM(x, x_z, x_mask, y_z, ids))
forecasts = window_forecast if len(forecasts) == 0 else np.concatenate([forecasts, window_forecast],axis=1)
global_forecasts = window_global if len(global_forecasts) == 0 else np.concatenate([global_forecasts, window_global],axis=1)
local_forecasts = window_local if len(local_forecasts) == 0 else np.concatenate([local_forecasts, window_local],axis=1)
z_outputs = window_z if len(z_outputs) == 0 else np.concatenate([z_outputs, window_z],axis=1)
# end for
forecasts_df = pd.DataFrame(forecasts, columns=[f'V{t + 1}' for t in range(test_windows * horizon)]); forecasts_df.index.name = 'id'
global_df = pd.DataFrame(global_forecasts, columns=[f'V{t + 1}' for t in range(test_windows * horizon)]); global_df.index.name = 'id'
local_df = pd.DataFrame(local_forecasts, columns=[f'V{t + 1}' for t in range(test_windows * horizon)]); local_df.index.name = 'id'
z_df = pd.DataFrame(z_outputs, columns=[f'V{t + 1}' for t in range(test_windows * horizon)]); z_df.index.name = 'id'
# create dir
if not os.path.isdir(OUTPUT_DIR):
Path(OUTPUT_DIR).mkdir(parents=True, exist_ok=True)
forecasts_df.to_csv(os.path.join(OUTPUT_DIR, f'forecast_{split_name}.csv'))
global_df.to_csv(os.path.join(OUTPUT_DIR, f'global_{split_name}.csv'))
local_df.to_csv(os.path.join(OUTPUT_DIR, f'local_{split_name}.csv'))
z_df.to_csv(os.path.join(OUTPUT_DIR, f'z_{split_name}.csv'))
#np.save(os.path.join(OUTPUT_DIR, f'alpha_{split_name}.npy'), EM.alpha.cpu().detach().numpy())
#np.save(os.path.join(OUTPUT_DIR, f'loss_{split_name}.npy'), np.array(training_loss_log))
#torch.save({'PM':PM.state_dict(),"EM":EM.state_dict()}, os.path.join(OUTPUT_DIR,f'model_{split_name}.pt'))
#np.save(os.path.join(OUTPUT_DIR, f'Kmask_{split_name}.npy'), all_Kmask.cpu().detach().numpy())
print("end", split_name)