From 0968c56e2e53aaf82762d7b1a865b658f4207cc4 Mon Sep 17 00:00:00 2001 From: Bryan Bernhart Date: Fri, 12 Apr 2024 14:11:34 -0700 Subject: [PATCH] WebNN: Implement MLBuffer dispatch Adds support to execute MLGraphs using MLBuffers. Allows the WebNN developer to directly bind MLBuffers as input/outputs to graphs for execution, which keeps MLBuffer data on-device after execution completes. In future CLs, dispatch can be further optimized. * Moves out per graph resources required by Dispatch(). * MLGraphBuilder.build no longer pre-allocates I/O. https://github.com/webmachinelearning/webnn/issues/482 Bug: 1472888 Change-Id: I7400704cf60c149c47c20f22c50d5f12bff89cf9 Cq-Include-Trybots: luci.chromium.try:win11-blink-rel --- webnn/conformance_tests/buffer.https.any.js | 2 + .../conformance_tests/gpu/buffer.https.any.js | 2 + webnn/resources/utils.js | 432 +++++++++++++++++- 3 files changed, 435 insertions(+), 1 deletion(-) diff --git a/webnn/conformance_tests/buffer.https.any.js b/webnn/conformance_tests/buffer.https.any.js index 9391be8dbf0b8e1..e690edf69c7d4af 100644 --- a/webnn/conformance_tests/buffer.https.any.js +++ b/webnn/conformance_tests/buffer.https.any.js @@ -14,3 +14,5 @@ testDestroyWebNNBuffer('destroyTwice'); testReadWebNNBuffer('read'); testWriteWebNNBuffer('write'); + +testDispatchWebNNBuffer('dispatch'); diff --git a/webnn/conformance_tests/gpu/buffer.https.any.js b/webnn/conformance_tests/gpu/buffer.https.any.js index 225bc401858ce62..2cf11f9c16ab6a3 100644 --- a/webnn/conformance_tests/gpu/buffer.https.any.js +++ b/webnn/conformance_tests/gpu/buffer.https.any.js @@ -14,3 +14,5 @@ testDestroyWebNNBuffer('destroyTwice', 'gpu'); testReadWebNNBuffer('read', 'gpu'); testWriteWebNNBuffer('write', 'gpu'); + +testDispatchWebNNBuffer('dispatch', 'gpu'); diff --git a/webnn/resources/utils.js b/webnn/resources/utils.js index d1dc0675a7f5e75..98d7bd123c2d730 100644 --- a/webnn/resources/utils.js +++ b/webnn/resources/utils.js @@ -867,9 +867,20 @@ const run = async (operationName, context, builder, resources, buildFunc) => { checkResults(operationName, namedOutputOperands, result.outputs, resources); }; +/** + * Checks if MLBuffer is implemented or not. + * @param {MLContext} ml_context - A ML context to test for MLBuffer support. + * @returns {Boolean} True if MLBuffer is supported; otherwise, False. + */ +const isMLBufferSupported = + (ml_context) => { + return (createBuffer(ml_context, 4) !== undefined); + } + /** * Run WebNN operation tests. - * @param {(String[]|String)} operationName - An operation name array or an operation name + * @param {(String[]|String)} operationName - An operation name array or an + * operation name * @param {Function} buildFunc - A build function for an operation * @param {String} deviceType - The execution device type for this test */ @@ -1286,3 +1297,422 @@ const testReadWebNNBuffer = (testName, deviceType = 'cpu') => { t, TypeError, another_ml_context.readBuffer(ml_buffer)); }, `${testName} / context_mismatch`); }; + +/** + * WebNN dispatch buffer operation test. + * @param {String} testName - The name of the test operation. + * @param {String} deviceType - The execution device type for this test. + */ +const testDispatchWebNNBuffer = (testName, deviceType = 'cpu') => { + let ml_context; + let ml_graph; + const shape = [3, 5]; + let inputs = {}; + let outputs = {}; + promise_setup(async () => { + ml_context = await navigator.ml.createContext({deviceType}); + // Construct a simple graph: A = B + C, with two outputs. + const builder = new MLGraphBuilder(ml_context); + const operandType = {dataType: 'float32', dimensions: shape}; + const lhs_operand = builder.input('lhs', operandType); + const rhs_operand = builder.input('rhs', operandType); + const output_1_operand = builder.add(lhs_operand, rhs_operand); + const output_2_operand = builder.add(lhs_operand, rhs_operand); + ml_graph = await builder.build( + {'output1': output_1_operand, 'output2': output_2_operand}); + const ml_buffer_size = + TypedArrayDict['float32'].BYTES_PER_ELEMENT * sizeOfShape(shape); + // MLBuffer was unsupported for the deviceType. + if (!isMLBufferSupported(ml_context)) { + return; + } + inputs = { + 'lhs': ml_context.createBuffer({size: ml_buffer_size}), + 'rhs': ml_context.createBuffer({size: ml_buffer_size}), + }; + outputs = { + 'output1': ml_context.createBuffer({size: ml_buffer_size}), + 'output2': ml_context.createBuffer({size: ml_buffer_size}), + }; + }); + + promise_test(async () => { + // MLBuffer was unsupported for the deviceType. + if (!isMLBufferSupported(ml_context)) { + return; + } + + let another_ml_context = await navigator.ml.createContext({deviceType}); + + // Control case, same context. + ml_context.dispatch(ml_graph, inputs, outputs); + + // Test the wrong context being used for inputs. + assert_throws_js( + TypeError, + () => ml_context.dispatch( + ml_graph, { + 'lhs': + another_ml_context.createBuffer({size: inputs['lhs'].size()}), + 'rhs': inputs['rhs'], + }, + outputs)); + + // Test the wrong context being used for outputs. + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'output1': + another_ml_context.createBuffer({size: outputs['output1'].size()}), + 'output2': outputs['output2'], + })); + }, `${testName} / context_mismatch`); + + promise_test(async () => { + // MLBuffer was unsupported for the deviceType. + if (!isMLBufferSupported(ml_context)) { + return; + } + + // Control case, valid size. + ml_context.dispatch(ml_graph, inputs, outputs); + + // Input is too large. + assert_throws_js( + TypeError, + () => ml_context.dispatch( + ml_graph, { + 'lhs': ml_context.createBuffer({size: inputs['lhs'].size() + 1}), + 'rhs': inputs['rhs'], + }, + outputs)); + + assert_throws_js( + TypeError, + () => ml_context.dispatch( + ml_graph, { + 'lhs': inputs['lhs'], + 'rhs': ml_context.createBuffer({size: inputs['rhs'].size() + 1}), + }, + outputs)); + + // Output is too large. + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'output1': ml_context.createBuffer({size: outputs['output1'].size() + 1}), + 'output2': outputs['output2'], + })); + + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'output1': outputs['output1'], + 'output2': ml_context.createBuffer({size: outputs['output2'].size() + 1}), + })); + }, `${testName} / invalid_size`); + + promise_test(async () => { + // MLBuffer was unsupported for the deviceType. + if (!isMLBufferSupported(ml_context)) { + return; + } + + // Control case, valid names. + ml_context.dispatch(ml_graph, inputs, outputs); + + // No names is invalid. + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, {}, {})); + + // Input name is invalid. + assert_throws_js( + TypeError, + () => ml_context.dispatch( + ml_graph, { + 'a_different_input_name': inputs['lhs'], + 'rhs': inputs['rhs'], + }, + outputs)); + + assert_throws_js( + TypeError, + () => ml_context.dispatch( + ml_graph, { + 'lhs': inputs['lhs'], + 'a_different_input_name': inputs['rhs'], + }, + outputs)); + + // Output name is invalid. + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'a_different_output_name': outputs['output1'], + 'output2': outputs['output2'], + })); + + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'output1': outputs['output1'], + 'a_different_output_name': outputs['output2'], + })); + + // Too few named inputs is invalid. + assert_throws_js( + TypeError, + () => ml_context.dispatch( + ml_graph, { + 'lhs': inputs['lhs'], + }, + outputs)); + + // Too many named inputs is invalid. + assert_throws_js( + TypeError, + () => ml_context.dispatch( + ml_graph, { + 'lhs': inputs['lhs'], + 'rhs': inputs['rhs'], + 'a_different_input_name': + ml_context.createBuffer({size: inputs['rhs'].size()}), + }, + outputs)); + + // Too few named outputs is invalid. + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'output1': outputs['output1'] + })); + + // Too many named outputs is invalid. + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'output1': outputs['output1'], + 'output2': outputs['output2'], + 'a_different_output_name': + ml_context.createBuffer({size: outputs['output2'].size()}), + })); + }, `${testName} / invalid_name`); + + promise_test(async () => { + // MLBuffer was unsupported for the deviceType. + if (!isMLBufferSupported(ml_context)) { + return; + } + + // Control case, valid buffers. + ml_context.dispatch(ml_graph, inputs, outputs); + + // Same buffer used as outputs more than once is invalid. + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'output1': outputs['output1'], + 'output2': outputs['output1'], + })); + + // Same buffer used as input and output is invalid. + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'output1': inputs['lhs'], + 'output2': outputs['output2'], + })); + + assert_throws_js( + TypeError, + () => ml_context.dispatch( + ml_graph, { + 'lhs': outputs['output1'], + 'rhs': inputs['rhs'], + }, + outputs)); + + // Buffer that does not exist is invalid. + assert_throws_js( + TypeError, + () => ml_context.dispatch( + ml_graph, { + 'lhs': undefined, + 'rhs': inputs['rhs'], + }, + outputs)); + + assert_throws_js(TypeError, () => ml_context.dispatch(ml_graph, inputs, { + 'output1': undefined, + 'output2': outputs['output2'], + })); + }, `${testName} / invalid_buffer`); + + promise_test(async () => { + // MLBuffer was unsupported for the deviceType. + if (!isMLBufferSupported(ml_context)) { + return; + } + + const dispatch_inputs = { + 'lhs': ml_context.createBuffer({size: inputs['lhs'].size}), + 'rhs': ml_context.createBuffer({size: inputs['rhs'].size}), + }; + + const dispatch_1_outputs = { + 'output1': ml_context.createBuffer({size: outputs['output1'].size}), + 'output2': ml_context.createBuffer({size: outputs['output2'].size}), + }; + + const dispatch_2_outputs = { + 'output1': ml_context.createBuffer({size: outputs['output1'].size}), + 'output2': ml_context.createBuffer({size: outputs['output2'].size}), + }; + + // Initialize inputs + const input_data = + new TypedArrayDict['float32'](sizeOfShape(shape)).fill(1.0); + ml_context.writeBuffer(dispatch_inputs['lhs'], input_data); + ml_context.writeBuffer(dispatch_inputs['rhs'], input_data); + + // Output_1 = LHS + RHS = 1 + 1 = 2 + ml_context.dispatch(ml_graph, dispatch_inputs, dispatch_1_outputs); + + // Output_2 = LHS + RHS = 1 + 1 = 2 + ml_context.dispatch(ml_graph, dispatch_inputs, dispatch_2_outputs); + + await assert_buffer_data_equals( + ml_context, dispatch_1_outputs['output1'], + new Float32Array(sizeOfShape(shape)).fill(2.0)); + + await assert_buffer_data_equals( + ml_context, dispatch_1_outputs['output2'], + new Float32Array(sizeOfShape(shape)).fill(2.0)); + + await assert_buffer_data_equals( + ml_context, dispatch_2_outputs['output1'], + new Float32Array(sizeOfShape(shape)).fill(2.0)); + + await assert_buffer_data_equals( + ml_context, dispatch_2_outputs['output2'], + new Float32Array(sizeOfShape(shape)).fill(2.0)); + }, `${testName} / same_inputs`); + + promise_test(async () => { + // MLBuffer was unsupported for the deviceType. + if (!isMLBufferSupported(ml_context)) { + return; + } + + const dispatch_1_inputs = { + 'lhs': ml_context.createBuffer({size: inputs['lhs'].size}), + 'rhs': ml_context.createBuffer({size: inputs['rhs'].size}), + }; + + const dispatch_2_inputs = { + 'lhs': ml_context.createBuffer({size: inputs['lhs'].size}), + 'rhs': ml_context.createBuffer({size: inputs['rhs'].size}), + }; + + const dispatch_outputs = { + 'output1': ml_context.createBuffer({size: outputs['output1'].size}), + 'output2': ml_context.createBuffer({size: outputs['output2'].size}), + }; + + // Initialize inputs + const input_1_data = + new TypedArrayDict['float32'](sizeOfShape(shape)).fill(1.0); + ml_context.writeBuffer(dispatch_1_inputs['lhs'], input_1_data); + ml_context.writeBuffer(dispatch_1_inputs['rhs'], input_1_data); + + const input_2_data = + new TypedArrayDict['float32'](sizeOfShape(shape)).fill(2.0); + ml_context.writeBuffer(dispatch_2_inputs['lhs'], input_2_data); + ml_context.writeBuffer(dispatch_2_inputs['rhs'], input_2_data); + + // Output = LHS_1 + RHS_1 = 1 + 1 = 2 + ml_context.dispatch(ml_graph, dispatch_1_inputs, dispatch_outputs); + + // Output = LHS_2 + RHS_2 = 2 + 2 = 4 + ml_context.dispatch(ml_graph, dispatch_2_inputs, dispatch_outputs); + + await assert_buffer_data_equals( + ml_context, dispatch_outputs['output1'], + new Float32Array(sizeOfShape(shape)).fill(4.0)); + + await assert_buffer_data_equals( + ml_context, dispatch_outputs['output2'], + new Float32Array(sizeOfShape(shape)).fill(4.0)); + }, `${testName} / same_outputs`); + + promise_test(async () => { + // MLBuffer was unsupported for the deviceType. + if (!isMLBufferSupported(ml_context)) { + return; + } + + const dispatch_inputs = { + 'lhs': ml_context.createBuffer({size: inputs['lhs'].size}), + 'rhs': ml_context.createBuffer({size: inputs['rhs'].size}), + }; + + const dispatch_outputs = { + 'output1': ml_context.createBuffer({size: outputs['output1'].size}), + 'output2': ml_context.createBuffer({size: outputs['output2'].size}), + }; + + // Initialize inputs + const input_data = + new TypedArrayDict['float32'](sizeOfShape(shape)).fill(1.0); + ml_context.writeBuffer(dispatch_inputs['lhs'], input_data); + ml_context.writeBuffer(dispatch_inputs['rhs'], input_data); + + // Output = LHS + RHS = 1 + 1 = 2 + ml_context.dispatch(ml_graph, dispatch_inputs, dispatch_outputs); + ml_context.dispatch(ml_graph, dispatch_inputs, dispatch_outputs); + + await assert_buffer_data_equals( + ml_context, dispatch_outputs['output1'], + new Float32Array(sizeOfShape(shape)).fill(2.0)); + + await assert_buffer_data_equals( + ml_context, dispatch_outputs['output2'], + new Float32Array(sizeOfShape(shape)).fill(2.0)); + }, `${testName} / same_inputs_and_outputs`); + + promise_test(async () => { + // MLBuffer was unsupported for the deviceType. + if (!isMLBufferSupported(ml_context)) { + return; + } + + const dispatch_inputs = { + 'lhs': ml_context.createBuffer({size: inputs['lhs'].size}), + 'rhs': ml_context.createBuffer({size: inputs['rhs'].size}), + }; + + const dispatch_1_outputs = { + 'output1': ml_context.createBuffer({size: outputs['output1'].size}), + 'output2': ml_context.createBuffer({size: outputs['output2'].size}), + }; + + const dispatch_2_outputs = { + 'output1': ml_context.createBuffer({size: outputs['output1'].size}), + 'output2': ml_context.createBuffer({size: outputs['output2'].size}), + }; + + // Initialize inputs + const input_data = + new TypedArrayDict['float32'](sizeOfShape(shape)).fill(1.0); + ml_context.writeBuffer(dispatch_inputs['lhs'], input_data); + ml_context.writeBuffer(dispatch_inputs['rhs'], input_data); + + // Output_1 = LHS + RHS = 1 + 1 = 2 + ml_context.dispatch(ml_graph, dispatch_inputs, dispatch_1_outputs); + + // Output_2 = Output_1_LHS + Output_1_RHS = 2 + 2 = 4 + ml_context.dispatch( + ml_graph, { + 'lhs': dispatch_1_outputs['output1'], + 'rhs': dispatch_1_outputs['output2'], + }, + dispatch_2_outputs); + + // Output_1 = Output_2_LHS + Output_2_RHS = 4 + 4 = 8 + ml_context.dispatch( + ml_graph, { + 'lhs': dispatch_2_outputs['output1'], + 'rhs': dispatch_2_outputs['output2'], + }, + dispatch_1_outputs); + + await assert_buffer_data_equals( + ml_context, dispatch_1_outputs['output1'], + new Float32Array(sizeOfShape(shape)).fill(8)); + + await assert_buffer_data_equals( + ml_context, dispatch_1_outputs['output2'], + new Float32Array(sizeOfShape(shape)).fill(8)); + }, `${testName} / outputs_as_inputs`); +};