-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSBIR_trainer.py
964 lines (805 loc) · 38.2 KB
/
SBIR_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
import os
import time
import shutil
import pickle
import numpy as np
import matplotlib.pyplot as plt
import random
import torch
import torch.nn.functional as F
import torch.nn.utils as utils
from tqdm import tqdm
from torch.optim.lr_scheduler import ReduceLROnPlateau
from tensorboard_logger import configure, log_value
from model import RecurrentAttention
from utils import AverageMeter
class Trainer:
"""A Recurrent Attention Model trainer.
All hyperparameters are provided by the user in the
config file.
"""
def __init__(self, config, data_loader):
"""
Construct a new Trainer instance.
Args:
config: object containing command line arguments.
data_loader: A data iterator.
"""
self.config = config
if config.use_gpu and torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
# glimpse network params
self.patch_size = config.patch_size
self.glimpse_scale = config.glimpse_scale
self.num_patches = config.num_patches
self.loc_hidden = config.loc_hidden
self.glimpse_hidden = config.glimpse_hidden
# core network params
self.num_glimpses = config.num_glimpses
self.hidden_size = config.hidden_size
# reinforce params
self.std = config.std
self.M = config.M
# data params
if config.is_train:
self.train_loader = data_loader[0]
self.valid_loader = data_loader[1]
self.num_train = len(self.train_loader)
self.num_valid = len(self.valid_loader)
else:
self.test_loader = data_loader
self.num_test = len(self.test_loader)
self.act_dimension = 64
self.num_channels = 1
# training params
self.epochs = config.epochs
self.start_epoch = 0
self.momentum = config.momentum
self.lr = config.init_lr
# misc params
self.best = config.best
self.ckpt_dir = config.ckpt_dir
self.logs_dir = config.logs_dir
self.best_valid_reward = 0.0
self.counter = 0
self.lr_patience = config.lr_patience
self.train_patience = config.train_patience
self.use_tensorboard = config.use_tensorboard
self.resume = config.resume
self.print_freq = config.print_freq
self.plot_freq = config.plot_freq
self.model_name = "ram_{}_{}x{}_{}".format(
config.num_glimpses,
config.patch_size,
config.patch_size,
config.glimpse_scale,
)
self.plot_dir = "./plots/" + self.model_name + "/"
if not os.path.exists(self.plot_dir):
os.makedirs(self.plot_dir)
# configure tensorboard logging
if self.use_tensorboard:
tensorboard_dir = self.logs_dir + self.model_name
print("[*] Saving tensorboard logs to {}".format(tensorboard_dir))
if not os.path.exists(tensorboard_dir):
os.makedirs(tensorboard_dir)
configure(tensorboard_dir)
# build RAM model
self.model = RecurrentAttention(
self.patch_size,
self.num_patches,
self.glimpse_scale,
self.num_channels,
self.loc_hidden,
self.glimpse_hidden,
self.std,
self.hidden_size,
self.act_dimension,
)
self.model.to(self.device)
# initialize optimizer and scheduler
self.optimizer = torch.optim.Adam(
self.model.parameters(), lr=self.config.init_lr
)
self.scheduler = ReduceLROnPlateau(
self.optimizer, "max", factor= 0.1, patience=self.lr_patience
)
with open("Train.pickle", "rb") as f:
self.Image_Array_Train, self.Sketch_Array_Train, self.Image_Name_Train, self.Sketch_Name_Train = pickle.load(f)
with open("Test.pickle", "rb") as f:
self.Image_Array_Test, self.Sketch_Array_Test, self.Image_Name_Test, self.Sketch_Name_Test = pickle.load(f)
# with open("TrainRL.pickle", "rb") as f:
# self.Sketch_Array_Train_RL, self.Sketch_Name_Train_RL = pickle.load(f)
# with open("TestRL.pickle", "rb") as f:
# self.Sketch_Array_Test_RL, self.Sketch_Name_Test_RL = pickle.load(f)
# self.Sketch_Array_Train_RL = torch.stack(self.Sketch_Array_Train_RL)
# print(self.Sketch_Array_Train_RL.shape)
# self.Sketch_Array_Test_RL = torch.stack(self.Sketch_Array_Test_RL)
# print(self.Sketch_Array_Test_RL.shape)
print("pretrained load completed!")
# self.Sketch_Array_Valid = self.Sketch_Array_Test[:100]
# self.Sketch_Name_Valid = self.Sketch_Name_Test[:100]
def reset(self):
h_t = torch.zeros(
self.batch_size,
self.hidden_size,
dtype=torch.float,
device=self.device,
requires_grad=True,
)
l_t = torch.FloatTensor(self.batch_size, 2).uniform_(-1, 1).to(self.device)
l_t.requires_grad = True
return h_t, l_t
def train(self):
"""Train the model on the training set.
A checkpoint of the model is saved after each epoch
and if the validation accuracy is improved upon,
a separate ckpt is created for use on the test set.
"""
# load the most recent checkpoint
if self.resume:
self.load_checkpoint(best=False)
print(
"\n[*] Train on {} samples, validate on {} samples".format(
self.num_train, self.num_valid
)
)
dict_list = []
epoches = []
t_loss = []
t_reward = []
v_reward = []
v_acc = []
v_acc10 = []
v_rp = []
counter1 = 0
for epoch in range(self.start_epoch, self.epochs):
print(
"\nEpoch: {}/{} - LR: {:.6f}".format(
epoch + 1, self.epochs, self.optimizer.param_groups[0]["lr"]
)
)
# train for 1 epoch
train_loss, train_reward, train_loss_action = self.train_one_epoch(epoch, dict_list, counter1)
# evaluate on validation set
valid_reward, valid_acc, valid_acc10, rp = self.validate(epoch)
# reduce lr if validation loss plateaus
self.scheduler.step(valid_reward)
is_best = valid_reward > self.best_valid_reward
msg1 = "train loss: {:.3f} - train reward: {:.3f} - train action_loss: {:.3f} "
msg2 = "- val reward: {:.3f} - val acc: {:.3f} - val err: {:.3f}"
if is_best:
self.counter = 0
msg2 += " [*]"
msg = msg1 + msg2
print(
msg.format(
train_loss, train_reward, train_loss_action, valid_reward, valid_acc, 1 - valid_acc
)
)
epoches.append(epoch)
t_loss.append(train_loss)
t_reward.append(train_reward)
v_reward.append(valid_reward)
v_acc.append(valid_acc)
v_acc10.append(valid_acc10)
v_rp.append(rp)
counter1 += 1
# if self.use_tensorboard:
# log_value("train_loss", train_loss, epoch)
# log_value("train_reward", train_reward, epoch)
# # log_value("train_acc", train_acc, epoch)
# log_value("train_loss_action", train_loss_action, epoch)
# log_value("train_loss_reinforce", train_loss_reinforce, epoch)
# log_value("valid reward", valid_reward, epoch)
# log_value("top5 acc", valid_acc, epoch)
# log_value("top10 acc", valid_acc10, epoch)
# check for improvement
if not is_best:
self.counter += 1
if self.counter > self.train_patience:
print("[!] No improvement in a while, stopping training.")
break
self.best_valid_reward = max(valid_reward, self.best_valid_reward)
self.save_checkpoint(
{
"epoch": epoch + 1,
"model_state": self.model.state_dict(),
"optim_state": self.optimizer.state_dict(),
"best_valid_acc": self.best_valid_reward,
},
is_best,
)
plt.plot(epoches, t_loss, color='blue', label='train_loss')
plt.ylabel('training loss')
plt.xlabel('epochs')
# my_x_ticks = np.arange(0, 1000, 50)
# plt.xticks(my_x_ticks)
plt.legend(loc='best')
plt.title('Training Loss Plot')
plt.savefig('train_loss.eps')
plt.close()
plt.plot(epoches, t_reward, color='blue', label='train_reward')
plt.ylabel('training reward')
plt.xlabel('epochs')
# my_x_ticks = np.arange(0, 1000, 50)
# plt.xticks(my_x_ticks)
# my_y_ticks = np.arange(0, 1, 0.05)
# plt.yticks(my_y_ticks)
plt.legend(loc='best')
plt.title('Training Reward Plot')
plt.savefig('train_reward.eps')
plt.close()
plt.plot(epoches, v_reward, color='blue', label='valid_reward')
plt.ylabel('valid reward')
plt.xlabel('epochs')
# my_x_ticks = np.arange(0, 1000, 50)
# plt.xticks(my_x_ticks)
# my_y_ticks = np.arange(0, 1, 0.05)
# plt.yticks(my_y_ticks)
plt.legend(loc='best')
plt.title('Valid Reward Plot')
plt.savefig('valid_reward.eps')
plt.close()
plt.plot(epoches, v_acc, color='blue', label='valid_acc')
plt.ylabel('valid accuracy')
plt.xlabel('epochs')
# my_y_ticks = np.arange(0, 1, 0.01)
# plt.yticks(my_y_ticks)
plt.legend(loc='best')
plt.title('Valid top5@Accuracy Plot')
plt.savefig('valid_accuracy.eps')
plt.close()
plt.plot(epoches, v_acc10, color='blue', label='valid_acc')
plt.ylabel('valid accuracy')
plt.xlabel('epochs')
# my_y_ticks = np.arange(0, 1, 0.01)
# plt.yticks(my_y_ticks)
plt.legend(loc='best')
plt.title('Valid top10@Accuracy Plot')
plt.savefig('valid_accuracy10.eps')
plt.close()
plt.plot(epoches, v_rp, color='blue', label='valid_rp')
plt.ylabel('valid ranking percentile')
plt.xlabel('epochs')
# my_y_ticks = np.arange(0, 1, 0.01)
# plt.yticks(my_y_ticks)
plt.legend(loc='best')
plt.title('Valid Rank Percentile Plot')
plt.savefig('valid_rp.eps')
plt.close()
def get_reward(self, action, sketch_name):
sketch_query_name = '_'.join(sketch_name.split('/')[-1].split('_')[:-1])
position_query = self.Image_Name_Train.index(sketch_query_name)
target_distance = F.pairwise_distance(action,
self.Image_Array_Train[position_query].unsqueeze(0))
distance = F.pairwise_distance(action, self.Image_Array_Train)
rank = distance.le(target_distance).sum()
if rank.item() == 0:
reward = 1. / (rank.item() + 1)
else:
reward = 1. / rank.item()
return reward, rank.item(), self.Image_Array_Train[position_query].unsqueeze(0).to(self.device).detach()
def train_one_epoch(self, epoch, dict_list, counter):
"""
Train the model for 1 epoch of the training set.
An epoch corresponds to one full pass through the entire
training set in successive mini-batches.
This is used by train() and should not be called manually.
"""
self.model.train()
batch_time = AverageMeter()
reward = AverageMeter()
losses_action = AverageMeter()
# losses_reinforce = AverageMeter()
# losses_baseline = AverageMeter()
losses = AverageMeter()
# accs = AverageMeter()
tic = time.time()
# imgs = []
# locs = []
with tqdm(total=self.num_train) as pbar:
for i, sampled_batch in enumerate(self.train_loader):
self.optimizer.zero_grad()
plot = False
if (epoch % self.plot_freq == 0) and (i == 0):
plot = True
# imgs = []
# locs_list = []
loss_buffer = []
for j, sampled_sketch in enumerate(sampled_batch['sketch_img']):
if (epoch == 0 or counter==0) and i==0:
dict = {}
dict_list.append(dict)
# x, y = x.to(self.device), y.to(self.device)
x = sampled_sketch.to(self.device)
# initialize location vector and hidden state
self.batch_size = x.shape[0]
# h_t = torch.tensor(self.Sketch_Array_Train[i][-1], dtype=torch.float, device=self.device,requires_grad=True).unsqueeze(0)
# if (i+1)*32<=951:
# h_t = torch.stack(self.Sketch_Array_Train[(i*32):(i+1)*32]).clone().detach().float().to(self.device).requires_grad_(True)
# h_t = h_t[:,j]
# standard = h_t
# else:
# h_t = torch.stack(self.Sketch_Array_Train[(i*32):]).clone().detach().float().to(self.device).requires_grad_(True)
# h_t = h_t[:,j]
# standard = h_t
h_t, l_t = self.reset()
standard = h_t
# save images
# if j==8 or j == 16:
# imgs.append(x[0:9])
# imgs = []
# imgs.append(x[0:9])
# extract the glimpses
# locs = []
# log_pi = []
# baselines = []
# entropys = []
# actions = []
np.set_printoptions(threshold=np.inf)
# for t in range(self.num_glimpses - 1):
#
# # forward pass through model
# h_t, l_t, b_t, p, entropy = self.model(x, l_t, h_t, epoch, t, False, standard)
#
# print("l_t_{}/{}/{}".format(epoch, i, t), l_t)
# print("h_t_{}/{}/{}".format(epoch, i, t), h_t[0].detach().cpu().numpy())
# # store
#
# locs.append(l_t[0:9])
# baselines.append(b_t)
# entropys.append(entropy)
# log_pi.append(p)
# last iteration
action_mean = self.model(x, l_t, h_t, epoch, 0, False, standard, last=True)
# compute losses for differentiable modules
sketch_name_list = sampled_batch['sketch_path']
one_hot = []
Reward_back = []
# for k1, action in enumerate(actions):
# RL_loss = 0
for k, sketch_name in enumerate(sketch_name_list):
# assert sketch_name == self.Sketch_Name_Train[i * 32 + k]
# assert sketch_name == self.Sketch_Name_Train_RL[i * 32 + k]
action_single = action_mean[k].unsqueeze(0)
Reward, rank, target_img = self.get_reward(action_single, sketch_name)
# if rank > 10:
# Reward1 = 0.
# else:
# Reward1 = Reward
# if F.mse_loss(action_single.detach(), target_img) > 0.1:
# Reward1 = 0.
# RL_loss = RL_loss - Reward1*a_p[k]
# flag = False
# if sketch_name in dict_list[j]:
# if rank < dict_list[j][sketch_name]:
# flag = True
# dict_list[j][sketch_name] = rank
# else:
# dict_list[j][sketch_name] = rank
# flag = False
# if k1 == self.num_glimpses - 1:
one_hot.append(target_img)
Reward_back.append(torch.tensor([Reward]))
# RL_loss = RL_loss / len(sketch_name_list)
Reward_back = torch.stack(Reward_back)
# R = torch.stack(R_list).transpose(1,0).to(self.device)
# Reward_back = torch.stack(Reward_back_list).transpose(1, 0).to(self.device)
one_hot = torch.cat(one_hot)
assert one_hot[-1].sum() == target_img.sum()
loss_action = F.mse_loss(action_mean, one_hot)
loss = loss_action
# compute reinforce loss
# summed over time steps and averaged across batch
# sum up into a hybrid loss
# if epoch <= 30:
# loss = loss_action + 0.01 * loss_reinforce + 0.01 * loss_entropy
# else:
# loss = 0.01 * loss_reinforce + loss_action
# if epoch <= 200:
# loss = 0.01*loss_reinforce + loss_action
# else:
# loss = 0.001 * loss_reinforce + loss_action
# elif epoch <= 100:
# loss = loss_action + 0.01 * loss_reinforce + 0.1 * loss_entropy
# elif epoch <= 200:
# loss = loss_action + 0.01 * loss_reinforce + 0.05 * loss_entropy
# elif epoch <= 500:
# loss = loss_action + 0.01 * loss_reinforce + 0.01 * loss_entropy
# else:
# loss = loss_action + 0.01 * loss_reinforce
loss_buffer.append(loss)
# acc = adjusted_reward.squeeze().mean()
# R = R.squeeze().mean()
Reward_back = Reward_back.squeeze().mean()
# store
# print('h_t', h_t)
# print('h_t_norm', torch.norm(h_t))
losses.update(loss.item(), x.size()[0])
losses_action.update(loss_action.item(), x.size()[0])
# losses_baseline.update(loss_baseline.item(), x.size()[0])
# accs.update(acc.item(), x.size()[0])
reward.update(Reward_back, x.size()[0])
# compute gradients and update SGD
policy_loss = torch.stack(loss_buffer).mean()
policy_loss.backward()
# utils.clip_grad_norm_(self.model.classifier.parameters(), 40)
# print('classifer_weight_grad', self.model.classifier.fc.weight.grad)
# print('classifer_bias_grad', self.model.classifier.fc.bias.grad)
# print('sensor_weight1_grad', self.model.sensor.fc1.weight.grad)
# print('sensor_bias1_grad', self.model.sensor.fc1.bias.grad)
# print('rnn_i2h_grad', self.model.rnn.i2h.weight.grad)
# print('rnn_h2h_grad', self.model.rnn.h2h.weight.grad)
self.optimizer.step()
# measure elapsed time
toc = time.time()
batch_time.update(toc - tic)
pbar.set_description(
(
"{:.1f}s - loss: {:.3f} - reward: {:.3f}-action loss: {:.3f}".format(
(toc - tic), losses.avg, reward.avg, losses_action.avg
)
)
)
pbar.update(self.batch_size*17)
# dump the glimpses and locs
# if plot:
# # imgs = [g.cpu().data.numpy().squeeze(1) for g in imgs]
# # locs = torch.stack(locs).transpose(1,0)
# # locs = [l.cpu().data.numpy() for l in locs]
# imgs = torch.cat(imgs).cpu().data.numpy().squeeze(1)
# locs = []
# for loc_index in range(6):
# locs.append(torch.cat([locs_list[0][loc_index], locs_list[1][loc_index]]))
# # imgs = [g.cpu().data.numpy().squeeze() for g in imgs]
# # locs = [l.cpu().data.numpy() for l in locs_list[0]]
# assert len(locs) == self.num_glimpses
# pickle.dump(
# imgs, open(self.plot_dir + "g_{}.p".format(epoch + 1), "wb")
# )
# pickle.dump(
# locs, open(self.plot_dir + "l_{}.p".format(epoch + 1), "wb")
# )
# log to tensorboard
# if self.use_tensorboard:
# iteration = epoch * len(self.train_loader) + i
# log_value("train_loss", losses.avg, iteration)
# log_value("train_reward", reward.avg, iteration)
# log_value("train_acc", accs.avg, iteration)
# log_value("train_loss_action", losses_action.avg, iteration)
# log_value("train_loss_reinforce", losses_reinforce.avg, iteration)
# log_value("train_loss_baseline", losses_baseline.avg, iteration)
# log_value("action_log_probablity", ac_p,iteration)
# log_value("location_log_probablity", p, iteration)
# log_value("h_t_norm", torch.norm(h_t), iteration)
return losses.avg, reward.avg, losses_action.avg
@torch.no_grad()
def validate1(self, epoch):
"""Evaluate the RAM model on the validation set.
"""
# losses = AverageMeter()
# accs = AverageMeter()
self.model.eval()
# num_of_Sketch_Step = len(self.Sketch_Array_Valid[0])
avererage_area = []
rank_all = torch.zeros(len(self.Sketch_Array_Valid))
Image_Array_Valid = []
previous_query = ""
for i, sampled_batch in enumerate(self.valid_loader):
# x, y = x.to(self.device), y.to(self.device)
sketch_name = self.Sketch_Name_Valid[i]
assert sketch_name == sampled_batch["sketch_path"][0]
sketch_query_name = '_'.join(sketch_name.split('/')[-1].split('_')[:-1])
position_query = self.Image_Name_Test.index(sketch_query_name)
if (previous_query != position_query):
previous_query = position_query
target = self.Image_Array_Test[position_query].unsqueeze(0)
Image_Array_Valid.append(target)
Image_Array_Valid = torch.cat(Image_Array_Valid)
for i, sampled_batch in enumerate(self.valid_loader):
sketch_name = self.Sketch_Name_Valid[i]
assert sketch_name == sampled_batch["sketch_path"][0]
sketch_query_name = '_'.join(sketch_name.split('/')[-1].split('_')[:-1])
position_query = self.Image_Name_Test.index(sketch_query_name)
x = sampled_batch['sketch_img'][-1].to(self.device)
# duplicate M times
# x = x.repeat(self.M, 1, 1, 1)
# initialize location vector and hidden state
self.batch_size = x.shape[0]
h_t, l_t = self.reset()
# h_t = torch.tensor(self.Sketch_Array_Valid[i][-1], dtype=torch.float,device=self.device,requires_grad=True ).unsqueeze(0)
# h_t = self.Sketch_Array_Train[i][-1].clone().detach().float().unsqueeze(0).to(self.device).requires_grad_(True)
# extract the glimpses
# log_pi = []
# baselines = []
for t in range(self.num_glimpses - 1):
# forward pass through model
h_t, l_t, b_t, p, entropy = self.model(x, l_t, h_t, epoch, t, True)
# last iteration
h_t, l_t, b_t, action, a_p, p, entropy = self.model(x, l_t, h_t, epoch, t, True, last=True)
# action, _ = self.model(h_t, last=True)
target_distance = F.pairwise_distance(action,
self.Image_Array_Test[position_query].unsqueeze(0))
distance = F.pairwise_distance(action, Image_Array_Valid)
rank_all[i] = distance.le(target_distance).sum()
if rank_all[i].item() == 0:
avererage_area.append(1.)
else:
avererage_area.append(1. / rank_all[i].item())
top1_accuracy = rank_all.le(5).sum().numpy() / rank_all.shape[0]
meanIOU = np.mean(avererage_area)
# log to tensorboard
if self.use_tensorboard:
iteration = epoch * len(self.valid_loader) + i
log_value("valid_avg_reward", meanIOU, iteration)
log_value("valid_top5_acc", top1_accuracy, iteration)
return meanIOU, top1_accuracy
@torch.no_grad()
def validate(self, epoch):
"""Evaluate the RAM model on the validation set.
"""
# num_of_Sketch_Step = len(self.Sketch_Array_Valid[0])
self.model.eval()
avererage_area = []
average_rp = []
rank_all = torch.zeros(len(self.Sketch_Array_Test), 17)
# Image_Array_Valid = []
# previous_query = ""
#
# for i, sampled_batch in enumerate(self.valid_loader):
# # x, y = x.to(self.device), y.to(self.device)
#
# sketch_name = self.Sketch_Name_Valid[i]
# assert sketch_name == sampled_batch["sketch_path"][0]
# sketch_query_name = '_'.join(sketch_name.split('/')[-1].split('_')[:-1])
# position_query = self.Image_Name_Test.index(sketch_query_name)
# if (previous_query != position_query):
# previous_query = position_query
# target = self.Image_Array_Test[position_query].unsqueeze(0)
# Image_Array_Valid.append(target)
# Image_Array_Valid = torch.cat(Image_Array_Valid)
for i, sampled_batch in enumerate(self.valid_loader):
sketch_name = self.Sketch_Name_Test[i]
assert sketch_name == sampled_batch["sketch_path"][0]
sketch_query_name = '_'.join(sketch_name.split('/')[-1].split('_')[:-1])
position_query = self.Image_Name_Test.index(sketch_query_name)
for j, sampled_sketch in enumerate(sampled_batch['sketch_img']):
x = sampled_sketch.to(self.device)
# initialize location vector and hidden state
self.batch_size = x.shape[0]
# h_t = self.Sketch_Array_Test[i][j].unsqueeze(0).clone().detach().float().to(
# self.device).requires_grad_(True)
# h_t = F.normalize(h_t)
# standard = h_t
# extract the glimpses
h_t, l_t = self.reset()
standard = h_t
# for t in range(self.num_glimpses - 1):
#
# # forward pass through model
# h_t, l_t, b_t, p, entropy = self.model(x, l_t, h_t, epoch, t, True, standard)
# last iteration
action = self.model(x, l_t, h_t, epoch, 0, True, standard, last=True)
target_distance = F.pairwise_distance(action,
self.Image_Array_Test[position_query].unsqueeze(0))
distance = F.pairwise_distance(action, self.Image_Array_Test)
rank_all[i, j] = distance.le(target_distance).sum()
rank_percentile = ((len((distance == target_distance).nonzero(as_tuple=True)) // 2) + len(self.Image_Name_Test) - rank_all[i,j]) / len(self.Image_Name_Test)
average_rp.append(rank_percentile)
if rank_all[i, j].item() == 0:
avererage_area.append(1.)
else:
avererage_area.append(1. / rank_all[i, j].item())
top5_accuracy = rank_all[:,-1].le(5).sum().numpy() / rank_all.shape[0]
top10_accuracy = rank_all[:,-1].le(10).sum().numpy() / rank_all.shape[0]
meanIOU = np.mean(avererage_area)
rp = np.mean(average_rp)
# log to tensorboard
# if self.use_tensorboard:
# iteration = epoch * len(self.valid_loader) + i
# log_value("valid_avg_reward", meanIOU, iteration)
# log_value("valid_top5_acc", top5_accuracy, iteration)
self.model.train()
return meanIOU, top5_accuracy, top10_accuracy, rp
@torch.no_grad()
def test1(self):
"""Test the RAM model.
This function should only be called at the very
end once the model has finished training.
"""
# load the best checkpoint
self.load_checkpoint(best=self.best)
# self.Sketch_Array_Test = self.Sketch_Array_Test[100:]
# self.Sketch_Name_Test = self.Sketch_Name_Test[100:]
self.model.eval()
avererage_area = []
average_rp = []
rank_all = torch.zeros(len(self.Sketch_Array_Test), 17)
rank_inverse = torch.zeros(len(self.Sketch_Array_Test), 17)
rank_rp = torch.zeros(len(self.Sketch_Array_Test), 17)
imgs = []
locs_list = []
# Image_Array_Valid = []
# previous_query = ""
#
# for i, sampled_batch in enumerate(self.valid_loader):
# # x, y = x.to(self.device), y.to(self.device)
#
# sketch_name = self.Sketch_Name_Valid[i]
# assert sketch_name == sampled_batch["sketch_path"][0]
# sketch_query_name = '_'.join(sketch_name.split('/')[-1].split('_')[:-1])
# position_query = self.Image_Name_Test.index(sketch_query_name)
# if (previous_query != position_query):
# previous_query = position_query
# target = self.Image_Array_Test[position_query].unsqueeze(0)
# Image_Array_Valid.append(target)
# Image_Array_Valid = torch.cat(Image_Array_Valid)
for i, sampled_batch in enumerate(self.test_loader):
sketch_name = self.Sketch_Name_Test[i]
assert sketch_name == sampled_batch["sketch_path"][0]
sketch_query_name = '_'.join(sketch_name.split('/')[-1].split('_')[:-1])
position_query = self.Image_Name_Test.index(sketch_query_name)
if i % 5 == 0:
imgs = []
locs_list = []
for j, sampled_sketch in enumerate(sampled_batch['sketch_img']):
x = sampled_sketch.to(self.device)
# initialize location vector and hidden state
self.batch_size = x.shape[0]
h_t, l_t = self.reset()
if j==8 or j==16:
imgs.append(x)
# h_t = torch.tensor(self.Sketch_Array_Valid[i][-1],dtype=torch.float,device=self.device,requires_grad=True ).unsqueeze(0)
# h_t = self.Sketch_Array_Train[i][-1].clone().detach().float().unsqueeze(0).to(self.device).requires_grad_(True)
# extract the glimpses
locs = []
for t in range(self.num_glimpses - 1):
# forward pass through model
h_t, l_t, b_t, p, entropy = self.model(x, l_t, h_t, 0, t, True)
locs.append(p)
# last iteration
h_t, l_t, b_t, action, a_p, p, entropy = self.model(x, l_t, h_t, 0, t, True, last=True)
target_distance = F.pairwise_distance(action,
self.Image_Array_Test[position_query].unsqueeze(0))
locs.append(p)
if j == 8 or j == 16:
locs_list.append(locs)
distance = F.pairwise_distance(action, self.Image_Array_Test)
rank_all[i, j] = distance.le(target_distance).sum()
rank_percentile = ((len((distance == target_distance).nonzero(as_tuple=True)) // 2) + len(
self.Image_Name_Test) - rank_all[i, j]) / len(self.Image_Name_Test)
average_rp.append(rank_percentile)
rank_rp[i,j] = rank_percentile
if rank_all[i, j].item() == 0:
avererage_area.append(1.)
rank_inverse[i, j] = 1.
else:
avererage_area.append(1. / rank_all[i, j].item())
rank_inverse[i, j] = 1. / rank_all[i, j].item()
if i % 5 == 4:
imgs = [g.cpu().data.numpy().squeeze(1) for g in imgs]
imgs = np.concatenate(imgs)
locs = []
for loc_index in range(12):
locs.append(torch.cat([locs_list[0][loc_index], locs_list[1][loc_index],
locs_list[2][loc_index], locs_list[3][loc_index],
locs_list[4][loc_index], locs_list[5][loc_index],
locs_list[6][loc_index], locs_list[7][loc_index],
locs_list[8][loc_index], locs_list[9][loc_index]]))
assert len(locs) == self.num_glimpses
pickle.dump(
imgs, open(self.plot_dir + "test/"+ "g_{}.p".format(i + 1), "wb")
)
pickle.dump(
locs, open(self.plot_dir + "test/"+ "l_{}.p".format(i + 1), "wb")
)
top5_accuracy = rank_all[:, -1].le(5).sum().numpy() / rank_all.shape[0]
top10_accuracy = rank_all[:, -1].le(10).sum().numpy() / rank_all.shape[0]
meanIOU = np.mean(avererage_area)
rp = np.mean(average_rp)
rank_inverse = [rank_inverse[:,i].mean() for i in range(17)]
rank_rp = [rank_rp[:,i].mean() for i in range(17)]
plt.plot(range(17), rank_inverse, color='blue', label='rank_inv')
plt.ylabel('test rank inverse')
plt.xlabel('complete degree')
# my_y_ticks = np.arange(0, 1, 0.01)
# plt.yticks(my_y_ticks)
plt.legend(loc='best')
plt.title('test rank inverse versus partial sketch')
plt.savefig('test_rinv.eps')
plt.close()
plt.plot(range(17), rank_rp, color='blue', label='rank_rp')
plt.ylabel('test rank percentile')
plt.xlabel('complete degree')
# my_y_ticks = np.arange(0, 1, 0.01)
# plt.yticks(my_y_ticks)
plt.legend(loc='best')
plt.title('test rp inverse versus partial sketch')
plt.savefig('test_rp.eps')
plt.close()
print(
"[*] MeanIou Test top5_acc Test top10_acc rp: ({:.2f} - {:.2f} - {:.2f} - {:.2f})".format(
meanIOU, top5_accuracy, top10_accuracy, rp
)
)
return meanIOU, top5_accuracy
@torch.no_grad()
def test(self):
"""Test the RAM model.
This function should only be called at the very
end once the model has finished training.
"""
correct = 0
# load the best checkpoint
self.load_checkpoint(best=self.best)
for i, (x, y) in enumerate(self.test_loader):
x, y = x.to(self.device), y.to(self.device)
# duplicate M times
x = x.repeat(self.M, 1, 1, 1)
# initialize location vector and hidden state
self.batch_size = x.shape[0]
h_t, l_t = self.reset()
# extract the glimpses
for t in range(self.num_glimpses - 1):
# forward pass through model
h_t, l_t, b_t, p = self.model(x, l_t, h_t)
# last iteration
h_t, l_t, b_t, log_probas, p = self.model(x, l_t, h_t, last=True)
log_probas = log_probas.view(self.M, -1, log_probas.shape[-1])
log_probas = torch.mean(log_probas, dim=0)
pred = log_probas.data.max(1, keepdim=True)[1]
correct += pred.eq(y.data.view_as(pred)).cpu().sum()
perc = (100.0 * correct) / (self.num_test)
error = 100 - perc
print(
"[*] Test Acc: {}/{} ({:.2f}% - {:.2f}%)".format(
correct, self.num_test, perc, error
)
)
def save_checkpoint(self, state, is_best):
"""Saves a checkpoint of the model.
If this model has reached the best validation accuracy thus
far, a seperate file with the suffix `best` is created.
"""
filename = self.model_name + "_ckpt.pth.tar"
ckpt_path = os.path.join(self.ckpt_dir, filename)
torch.save(state, ckpt_path)
if is_best:
filename = self.model_name + "_model_best.pth.tar"
shutil.copyfile(ckpt_path, os.path.join(self.ckpt_dir, filename))
def load_checkpoint(self, best=False):
"""Load the best copy of a model.
This is useful for 2 cases:
- Resuming training with the most recent model checkpoint.
- Loading the best validation model to evaluate on the test data.
Args:
best: if set to True, loads the best model.
Use this if you want to evaluate your model
on the test data. Else, set to False in which
case the most recent version of the checkpoint
is used.
"""
print("[*] Loading model from {}".format(self.ckpt_dir))
filename = self.model_name + "_ckpt.pth.tar"
if best:
filename = self.model_name + "_model_best.pth.tar"
ckpt_path = os.path.join(self.ckpt_dir, filename)
ckpt = torch.load(ckpt_path)
# load variables from checkpoint
self.start_epoch = ckpt["epoch"]
self.best_valid_acc = ckpt["best_valid_acc"]
self.best_valid_reward = ckpt["best_valid_acc"]
self.model.load_state_dict(ckpt["model_state"])
self.optimizer.load_state_dict(ckpt["optim_state"])
if best:
print(
"[*] Loaded {} checkpoint @ epoch {} "
"with best valid acc of {:.3f}".format(
filename, ckpt["epoch"], ckpt["best_valid_acc"]
)
)
else:
print("[*] Loaded {} checkpoint @ epoch {}".format(filename, ckpt["epoch"]))