Skip to content

Latest commit

 

History

History
169 lines (131 loc) · 7.21 KB

README.md

File metadata and controls

169 lines (131 loc) · 7.21 KB

Build Status codecov Open In Colab

Contents

Installation

pip install devolearn

# or you can build from the source:
pip install git+https://github.com/DevoLearn/devolearn

Example notebooks

Segmenting the Cell Membrane in C. elegans embryo

  • Importing the model
from devolearn import cell_membrane_segmentor
segmentor = cell_membrane_segmentor()
  • Running the model on an image and viewing the prediction
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg")
plt.imshow(seg_pred)
plt.show()
  • Running the model on a video and saving the predictions into a folder
filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds")
  • Finding the centroids of the segmented features
seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True)
plt.imshow(seg_pred)
plt.show()
  • Saving the centroids from each frame into a CSV
df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds")
df.to_csv("centroids.csv")

Segmenting the Cell Nucleus in C. elegans embryo

  • Importing the model
from devolearn import cell_nucleus_segmentor
segmentor = cell_nucleus_segmentor()
  • Running the model on an image and viewing the prediction
seg_pred = segmentor.predict(image_path = "sample_data/images/nucleus_seg_sample.jpg")
plt.imshow(seg_pred)
plt.show()

Generating synthetic images of embryos with a Pre-trained GAN

  • Importing the model
from devolearn import Generator, embryo_generator_model
generator = embryo_generator_model()
  • Generating a picture and viewing it with matplotlib
gen_image = generator.generate()
plt.imshow(gen_image)
plt.show()
  • Generating n images and saving them into foldername with a custom size
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500))

Predicting populations of cells within the C. elegans embryo

  • Importing the population model for inferences
from devolearn import lineage_population_model
  • Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
model = lineage_population_model(device = "cpu")
  • Making a prediction from an image
print(model.predict(image_path = "sample_data/images/embryo_sample.png"))
  • Making predictions from a video and saving the predictions into a CSV file
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10, postprocess = False)
  • Plotting the model's predictions from a video
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0, postprocess = False)
plot.show()

Links to Datasets

Model Data source
Segmenting the cell membrane in C. elegans embryo 3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo
Segmenting the nucleus in C. elegans embryo C. elegans Cell-Tracking-Challenge dataset
Cell lineage population prediction + embryo GAN EPIC dataset

Authors/maintainers:

Feel free to join our Slack workspace!