-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathacssggc.py
53 lines (41 loc) · 1.58 KB
/
acssggc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python3
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('clusters', type=str, nargs='+',
help='names of clusters')
parser.add_argument('--list', action='store_true',
help="list available clusters")
parser.add_argument('-z', type=str, default='__Fe_H_',
help="z (colour) variable (default='__Fe_H_')")
args = parser.parse_args()
import numpy as np
import matplotlib.pyplot as pl
from astroquery.vizier import Vizier
from astropy.io import fits
v = Vizier(columns=['**', '+_r'], row_limit=-1)
if args.list:
data = v.get_catalogs('J/AJ/133/1658/clusters')[0]
print(data)
data = v.query_object(args.clusters, catalog='J/AJ/133/1658/acssggc')[0]
clusters = list(np.unique(data['Cluster']))
meta = v.query_object(clusters, catalog='VII/202')[0]
Z = np.argsort(meta[args.z])
vmin = np.min(meta[args.z])
vmax = np.max(meta[args.z])
for (cluster, row) in zip([clusters[i] for i in Z], meta[Z]):
I = np.where(data['Cluster'] == cluster)[0]
I = I[data[I]['e_Vmag'] < 0.01]
I = I[data[I]['e_V-I'] < 0.01]
if len(args.clusters) > 1:
z = row[args.z]*np.ones(len(data[I]))
pl.scatter(data[I]['V-I'], data[I]['Vmag']-row['__m-M_V'], s=3, label=cluster,
c=z, vmin=vmin, vmax=vmax, cmap='jet')
else:
pl.scatter(data[I]['V-I'], data[I]['Vmag']-row['__m-M_V'], s=3, label=cluster)
pl.gca().invert_yaxis()
pl.xlabel(r"$\mathrm{V}-\mathrm{I}$")
pl.ylabel(r"$M_\mathrm{V}$")
if len(args.clusters) > 1:
pl.colorbar()
pl.legend()
pl.show()