-
Notifications
You must be signed in to change notification settings - Fork 1
/
ddqn_agent.py
114 lines (88 loc) · 4.59 KB
/
ddqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import random
from collections import namedtuple, deque
from model import QNetwork, Dual_QNetwork
import torch
import torch.nn.functional as F
import torch.optim as optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
def __init__(self, state_size, action_size, seed, lr, buffer_size, batch_size, update_step,
gamma, tau, dual_network=False):
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
# Q-Network
if dual_network == False:
self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device)
self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device)
else:
self.qnetwork_local = Dual_QNetwork(state_size, action_size, seed).to(device)
self.qnetwork_target = Dual_QNetwork(state_size, action_size, seed).to(device)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=lr)
# Replay memory
self.memory = ReplayBuffer(action_size, buffer_size, batch_size, seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
self.update_step = update_step
self.batch_size = batch_size
self.gamma = gamma
self.tau = tau
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
self.t_step = (self.t_step + 1) % self.update_step
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > self.batch_size:
experiences = self.memory.sample()
self.learn(experiences, self.gamma)
def act(self, state, eps=0.):
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local(state)
self.qnetwork_local.train()
# Epsilon-greedy action selection
if random.random() > eps:
return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def learn(self, experiences, gamma):
states, actions, rewards, next_states, dones = experiences
current_values = self.qnetwork_local(states).gather(1, actions)
target_action_idx = torch.max(self.qnetwork_local(next_states), 1)[1].unsqueeze(1)
target_values = rewards + (gamma * self.qnetwork_target(next_states).gather(1, target_action_idx) * (1 - dones))
# Compute loss
loss = F.mse_loss(current_values, target_values)
# Minimize the loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)
def soft_update(self, local_model, target_model, tau):
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class ReplayBuffer:
def __init__(self, action_size, buffer_size, batch_size, seed):
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(
device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(
device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
return len(self.memory)