forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
416 lines (376 loc) · 16.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# WikiGraphs is licensed under the terms of the Creative Commons
# Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.
#
# WikiText-103 data (unchanged) is licensed by Salesforce.com, Inc. under the
# terms of the Creative Commons Attribution-ShareAlike 4.0 International
# (CC BY-SA 4.0) license. You can find details about CC BY-SA 4.0 at:
#
# https://creativecommons.org/licenses/by-sa/4.0/legalcode
#
# Freebase data is licensed by Google LLC under the terms of the Creative
# Commons CC BY 4.0 license. You may obtain a copy of the License at:
#
# https://creativecommons.org/licenses/by/4.0/legalcode
#
# ==============================================================================
"""Train a transformer for language modeling on Wikitext-103."""
import concurrent
import functools
import os
import pickle
import time
from absl import app
from absl import flags
from absl import logging
import jax
import jraph
import numpy as np
import optax
from updaters import CheckpointingUpdater
from updaters import Updater
import utils
# Train
flags.DEFINE_integer('train_batch_size', 4, '(Per-Device) batch size for'
' training.')
flags.DEFINE_integer('train_timesteps', 150, 'Sequence length to learn on')
flags.DEFINE_integer('train_memory_size', 150, 'Memory size for transformer XL')
flags.DEFINE_bool('debug', False, 'Whether to turn on debugging mode')
flags.DEFINE_string('job_mode', 'train',
'One of `train`, `eval`, `sample`, `retrieve`.')
flags.DEFINE_integer('random_seed', 42, 'Random seed id.')
flags.DEFINE_integer('num_gpus', 8, 'Number of GPUs for training.')
# Eval
flags.DEFINE_integer('eval_batch_size', 1, 'Evaluation batch size')
flags.DEFINE_string('eval_subset', 'valid', 'Which subset to evaluate on,'
' one of `valid`, `test`.')
flags.DEFINE_integer('eval_every', 10, 'Evaluation frequency.')
flags.DEFINE_integer('eval_timesteps', 64, 'Sequence length to learn on')
flags.DEFINE_integer('eval_memory_size', 640, 'Memory size for transformer XL')
flags.DEFINE_integer('max_eval_samples', -1, 'Max number of eval samples. Set'
' as -1 to use the entire eval set.')
# Model
flags.DEFINE_integer('emb_dim', 410, 'model width')
flags.DEFINE_integer('num_heads', 10, 'Number of attention heads')
flags.DEFINE_integer('num_layers', 16, 'Number of transformer layers')
flags.DEFINE_integer('dense_dim', 2100, 'Size of dense hidden layer.')
flags.DEFINE_integer('tail_shrink_factor', 4,
'Low-frequency vocabulary shrinkage factor in adaptive'
' softmax.')
flags.DEFINE_string('emb_type', 'adaptive_softmax', 'Type of the word embedding'
' layer.')
flags.DEFINE_integer('clamp_len', 400, 'Clamp length for transformer XL.')
flags.DEFINE_float('dropout', 0.1, 'Dropout rate for the transformer layers.')
flags.DEFINE_float('dropout_attn', 0.0, 'Dropout rate for the attention'
' weights.')
flags.DEFINE_float('self_att_init_scale', 0.02,
'Self attention module initilization scale.')
flags.DEFINE_float('dense_init_scale', 0.02,
'Dense module initilization scale.')
# Graph neural net configs
flags.DEFINE_string('gnn_embed_type', 'adaptive', 'Token embedding type for the'
' graph.')
flags.DEFINE_integer('gnn_embed_dim', 128, 'Graph node embedding size.')
flags.DEFINE_integer('gnn_num_layers', 1, 'Number of layers in the GNN.')
flags.DEFINE_bool('gnn_layer_norm', True, 'Whether to use layer norm in GNN.')
# Bag-of-words to text configs
flags.DEFINE_integer('bow_embedding_dim', 256, 'Size of the bow embeddings.')
flags.DEFINE_integer('bow_n_tokens', 1, 'Number of tokens to use for the'
' bow2text model.')
# Sampling
flags.DEFINE_float('sampling_temperature', 0.8, 'Temperature used for'
' sampling. Sampling becomes more deterministic with a'
' lower temperature. Setting temperature to 1.0 samples'
' from the model distribution.')
flags.DEFINE_bool('prompt_title', False, 'Whether to prompt title when sample')
flags.DEFINE_integer('sample_length', 512, 'Length of samples.')
flags.DEFINE_integer('sample_memory_size', 640, 'Memory size for sampling.')
flags.DEFINE_integer('num_samples', 1000, 'Maximum number of samples to'
' generate.')
# Optimization
flags.DEFINE_float('init_lr', 0.00025, 'Initial learning rate.')
flags.DEFINE_float('min_lr_ratio', 0.0, 'Minimum learning rate as a ratio of'
' `init_lr`.')
flags.DEFINE_string('lr_schedule', 'cosine', 'One of `default`, `cosine`.')
flags.DEFINE_float('grad_clip', 0.25, 'Maximum gradient norm allowed for'
' clipping, set to a very large number to disable clipping.')
flags.DEFINE_integer('max_steps', 200_000, 'Number of training steps.')
flags.DEFINE_string('checkpoint_dir', '/tmp/graph2text',
'Directory to store checkpoints.')
# Data
flags.DEFINE_string('dataset', 'freebase2wikitext', 'Which dataset to train on,'
' one of "wikitext", "freebase2wikitext".')
flags.DEFINE_string('model_type', 'graph2text', 'One of "text", "graph2text",'
' "bow2text".')
flags.DEFINE_string('graph_data_version', 'max256', 'One of "max256", "max512",'
' "max1024".')
flags.DEFINE_integer('log_every', 50, 'Log every this many steps.')
flags.DEFINE_integer('ckpt_every', 1000, 'Checkpoint every this many steps.')
FLAGS = flags.FLAGS
def _preprocess(batch, num_devices=1):
return utils.preprocess(batch, FLAGS.model_type, num_devices)
def _train(updater, train_dataset, num_devices):
"""Train the transformer model."""
# Initialize parameters.
logging.info('Initializing parameters...')
rng = jax.random.PRNGKey(FLAGS.random_seed)
state = updater.init(
rng, _preprocess(train_dataset.return_faux_batch(), num_devices))
logging.info('Starting train loop...')
prev_time = time.time()
while True:
data = next(train_dataset)
state, metrics = updater.update(state, _preprocess(data, num_devices))
# We use JAX runahead to mask data preprocessing and JAX dispatch overheads.
# Using values from state/metrics too often will block the runahead and can
# cause these overheads to become more prominent.
step = np.array(metrics['step'])
if step % FLAGS.log_every == 0:
steps_per_sec = FLAGS.log_every / (time.time() - prev_time)
prev_time = time.time()
metrics.update({'steps_per_sec': steps_per_sec})
logging.info({k: float(v) for k, v in metrics.items()})
if step % FLAGS.ckpt_every == 0:
updater.save_checkpoint(state)
if step > FLAGS.max_steps:
break
def _eval(updater, eval_dataset):
"""Evaluate the transformer model."""
checkpoint_state = updater.load_checkpoint()
rng = jax.random.PRNGKey(FLAGS.random_seed)
state = updater.init_from_checkpoint(
rng, _preprocess(eval_dataset.return_faux_batch()), checkpoint_state)
eval_out, state = utils.evaluate(
eval_dataset, state, updater, FLAGS.eval_batch_size, _preprocess,
FLAGS.max_eval_samples, print_progress_every=20)
logging.info('Eval output: %s', eval_out)
def _retrieve(updater, eval_dataset):
"""Graph and text retrieval using the transformer model."""
checkpoint_state = updater.load_checkpoint()
rng = jax.random.PRNGKey(FLAGS.random_seed)
state = updater.init_from_checkpoint(
rng, _preprocess(eval_dataset.return_faux_batch()), checkpoint_state)
retrieval_out, _ = utils.compute_text_graph_relevance(
eval_dataset, state, updater, preprocess_fn=_preprocess,
print_progress_every=20)
logging.info('Retrieval output: %s', retrieval_out)
def _sample(eval_dataset, tokenizer, devices, batch_size=1):
"""Evaluate the graph2text transformer."""
checkpoint_dir = os.path.join(FLAGS.checkpoint_dir, 'checkpoint.pkl')
logging.info('Loading checkpoint from %s', checkpoint_dir)
with open(checkpoint_dir, 'rb') as f:
state = pickle.load(f)
if FLAGS.model_type == 'graph2text':
# process list of graphs into a batch
eval_dataset = map(lambda x: dict( # pylint: disable=g-long-lambda
obs=x['obs'],
target=x['target'],
should_reset=x['should_reset'],
mask=x['mask'],
graphs=jraph.batch(x['graphs']),
), eval_dataset)
eval_dataset = utils.take_unique_graphs(eval_dataset, FLAGS.model_type)
samplers = []
for device in devices:
sampler = utils.build_sampler(tokenizer, device=device)
samplers.append(sampler)
step = state['step']
params = state['params']
sample_logger = []
with concurrent.futures.ThreadPoolExecutor(
max_workers=len(samplers)) as executor:
futures = dict()
for sampler in samplers:
batch = next(eval_dataset)
prompts = utils.construct_prompts(
batch['obs'], batch_size, FLAGS.sample_length, tokenizer,
prompt_title=FLAGS.prompt_title)
if FLAGS.model_type in ['graph2text', 'bow2text']:
future = executor.submit(
utils.generate_samples, params, tokenizer, sampler,
model_type=FLAGS.model_type, prompts=prompts,
graphs=batch['graphs'])
futures[future] = (sampler, batch['graphs'], batch['obs'])
else:
future = executor.submit(
utils.generate_samples, params, tokenizer, sampler,
model_type=FLAGS.model_type, prompts=prompts, graphs=None)
futures[future] = (sampler, batch['obs'])
n_samples = 0
while n_samples < FLAGS.num_samples:
for future, future_items in list(futures.items()):
if not future.done():
continue
samples, tokens = future.result()
if FLAGS.model_type == 'graph2text':
sampler, graphs, text = future_items
graphs = jraph.unbatch(graphs)
elif FLAGS.model_type == 'bow2text':
sampler, graphs, text = future_items
else:
sampler, text = future_items
if FLAGS.model_type in ['graph2text', 'bow2text']:
for s, g, tk, txt in zip(samples, graphs, tokens, text):
# Only log a small fraction of the generated samples, if we are
# generating non-stop. Otherwise log every sample.
logging.info('[step %d]', step)
logging.info('graph=\n%r', g)
logging.info('sample=\n%s', s)
if FLAGS.model_type == 'graph2text':
sample_logger.append({
'step': step,
'sample': s,
'sample_tokens': tk,
'ground_truth_text': txt,
})
elif FLAGS.model_type == 'bow2text':
sample_logger.append({
'step': step,
'bow': g,
'sample': s,
'sample_tokens': tk,
'ground_truth_text': txt,
})
else:
for s, tk, txt in zip(samples, tokens, text):
# Only log a small fraction of the generated samples, if we are
# generating non-stop. Otherwise log every sample.
logging.info('[step %d]', step)
logging.info('sample=\n%s', s)
sample_logger.append({
'step': step,
'sample': s,
'sample_tokens': tk,
'ground_truth_text': txt,
})
n_samples += len(samples)
logging.info('Finished generating %d samples', n_samples)
del futures[future]
if n_samples < FLAGS.num_samples:
batch = next(eval_dataset)
prompts = utils.construct_prompts(
batch['obs'], batch_size, FLAGS.sample_length, tokenizer,
prompt_title=FLAGS.prompt_title)
if FLAGS.model_type in ['graph2text', 'bow2text']:
future = executor.submit(
utils.generate_samples, params, tokenizer, sampler,
model_type=FLAGS.model_type, prompts=prompts,
graphs=batch['graphs'])
futures[future] = (sampler, batch['graphs'], batch['obs'])
else:
future = executor.submit(
utils.generate_samples, params, tokenizer, sampler,
model_type=FLAGS.model_type, prompts=prompts, graphs=None)
futures[future] = (sampler, batch['obs'])
logging.info('Finished')
path = os.path.join(FLAGS.checkpoint_dir, 'samples.pkl')
with open(path, 'wb') as f:
pickle.dump(dict(samples=sample_logger), f)
logging.info('Samples saved to %s', path)
def main(_):
# Create the dataset.
tokenizer = utils.init_tokenizer(FLAGS.dataset)
graph_tokenizer = utils.init_graph_tokenizer()
dataset_class = utils.get_dataset_class(FLAGS.dataset, FLAGS.model_type)
has_graph = True if FLAGS.model_type == 'graph2text' else False
local_devices = jax.local_devices()
num_gpus = min(FLAGS.num_gpus, len(local_devices))
if FLAGS.job_mode == 'train':
train_dataset = dataset_class(
tokenizer=tokenizer,
graph_tokenizer=graph_tokenizer,
batch_size=FLAGS.train_batch_size,
subset='train',
timesteps=FLAGS.train_timesteps,
version=FLAGS.graph_data_version,
shuffle_data=True,
repeat=True,
debug=FLAGS.debug)
train_iter = iter(train_dataset)
loss_fn = utils.build_loss_fn(vocab_size=tokenizer.vocab_size,
cache_steps=FLAGS.train_memory_size)
optimizer = optax.chain(
optax.clip_by_global_norm(FLAGS.grad_clip),
optax.scale_by_adam(),
optax.scale_by_schedule(functools.partial(
utils.schedule,
lr_schedule=FLAGS.lr_schedule,
init_lr=FLAGS.init_lr,
min_lr_ratio=FLAGS.min_lr_ratio,
max_steps=FLAGS.max_steps)),
optax.scale(-1))
optimizer = optax.apply_if_finite(optimizer, max_consecutive_errors=5)
updater = Updater(loss_fn, optimizer,
devices=local_devices[:num_gpus],
has_graph=has_graph)
updater = CheckpointingUpdater(updater, FLAGS.checkpoint_dir)
_train(updater, train_iter, num_gpus)
elif FLAGS.job_mode == 'eval':
eval_dataset = dataset_class(
tokenizer=tokenizer,
graph_tokenizer=graph_tokenizer,
batch_size=FLAGS.eval_batch_size,
subset=FLAGS.eval_subset,
timesteps=FLAGS.eval_timesteps,
version=FLAGS.graph_data_version,
shuffle_data=False,
repeat=False,
debug=FLAGS.debug)
eval_iter = iter(eval_dataset)
loss_fn = utils.build_loss_fn(vocab_size=tokenizer.vocab_size,
cache_steps=FLAGS.eval_memory_size)
# only use one device for evaluation
devices = local_devices[:1]
updater = Updater(loss_fn, optimizer=None, devices=devices,
has_graph=has_graph)
updater = CheckpointingUpdater(updater, FLAGS.checkpoint_dir)
_eval(updater, eval_iter)
elif FLAGS.job_mode == 'sample':
eval_dataset = dataset_class(
tokenizer=tokenizer,
graph_tokenizer=graph_tokenizer,
batch_size=1,
subset=FLAGS.eval_subset,
timesteps=FLAGS.sample_length,
version=FLAGS.graph_data_version,
shuffle_data=False,
repeat=True,
debug=FLAGS.debug)
eval_iter = iter(eval_dataset)
_sample(eval_iter, tokenizer, local_devices[:num_gpus])
elif FLAGS.job_mode == 'retrieve':
eval_dataset = dataset_class(
tokenizer=tokenizer,
graph_tokenizer=graph_tokenizer,
batch_size=1,
subset=FLAGS.eval_subset,
timesteps=FLAGS.eval_timesteps,
version=FLAGS.graph_data_version,
shuffle_data=False,
repeat=False,
graph_retrieval_dataset=True,
debug=FLAGS.debug)
eval_iter = iter(eval_dataset)
loss_fn = utils.build_loss_fn(vocab_size=tokenizer.vocab_size,
cache_steps=FLAGS.eval_memory_size)
# only use one device for evaluation
devices = local_devices[:1]
updater = Updater(loss_fn, optimizer=None, devices=devices,
has_graph=has_graph)
updater = CheckpointingUpdater(updater, FLAGS.checkpoint_dir)
_retrieve(updater, eval_iter)
if __name__ == '__main__':
app.run(main)