forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
side_effects_penalty_test.py
244 lines (201 loc) · 9.08 KB
/
side_effects_penalty_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright 2019 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests for side_effects_penalty."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from six.moves import range
from side_effects_penalties import side_effects_penalty
from side_effects_penalties import training
from side_effects_penalties.side_effects_penalty import Actions
environments = ['box', 'vase', 'sushi_goal']
class SideEffectsTestCase(parameterized.TestCase):
def _timestep_to_state(self, timestep):
return tuple(map(tuple, np.copy(timestep.observation['board'])))
def _env_to_action_range(self, env):
action_spec = env.action_spec()
action_range = list(range(action_spec.minimum, action_spec.maximum + 1))
return action_range
class BaselineTestCase(SideEffectsTestCase):
def _create_baseline(self, env_name):
self._env, _ = training.get_env(env_name, True)
self._baseline_env, _ = training.get_env(env_name, True)
baseline_class = getattr(side_effects_penalty,
self.__class__.__name__[:-4]) # remove 'Test'
self._baseline = baseline_class(
self._env.reset(), True, self._baseline_env, self._timestep_to_state)
def _test_trajectory(self, actions, key):
init_state = self._timestep_to_state(self._env.reset())
self._baseline.reset()
current_state = init_state
for action in actions:
timestep = self._env.step(action)
next_state = self._timestep_to_state(timestep)
baseline_state = self._baseline.calculate(current_state, action,
next_state)
comparison_dict = {
'current_state': current_state,
'next_state': next_state,
'init_state': init_state
}
self.assertEqual(baseline_state, comparison_dict[key])
current_state = next_state
if timestep.last():
return
class StartBaselineTest(BaselineTestCase):
@parameterized.parameters(*environments)
def testInit(self, env_name):
self._create_baseline(env_name)
self._test_trajectory([Actions.NOOP], 'init_state')
@parameterized.parameters(*environments)
def testTenNoops(self, env_name):
self._create_baseline(env_name)
self._test_trajectory([Actions.NOOP for _ in range(10)], 'init_state')
class InactionBaselineTest(BaselineTestCase):
box_env, _ = training.get_env('box', True)
box_action_spec = box_env.action_spec()
@parameterized.parameters(
*list(range(box_action_spec.minimum, box_action_spec.maximum + 1)))
def testStaticEnvOneAction(self, action):
self._create_baseline('box')
self._test_trajectory([action], 'init_state')
def testStaticEnvRandomActions(self):
self._create_baseline('box')
num_steps = np.random.randint(low=1, high=20)
action_range = self._env_to_action_range(self._env)
actions = [np.random.choice(action_range) for _ in range(num_steps)]
self._test_trajectory(actions, 'init_state')
@parameterized.parameters(*environments)
def testInactionPolicy(self, env_name):
self._create_baseline(env_name)
num_steps = np.random.randint(low=1, high=20)
self._test_trajectory([Actions.NOOP for _ in range(num_steps)],
'next_state')
class StepwiseBaselineTest(BaselineTestCase):
def testStaticEnvRandomActions(self):
self._create_baseline('box')
action_range = self._env_to_action_range(self._env)
num_steps = np.random.randint(low=1, high=20)
actions = [np.random.choice(action_range) for _ in range(num_steps)]
self._test_trajectory(actions, 'current_state')
@parameterized.parameters(*environments)
def testInactionPolicy(self, env_name):
self._create_baseline(env_name)
num_steps = np.random.randint(low=1, high=20)
self._test_trajectory([Actions.NOOP for _ in range(num_steps)],
'next_state')
@parameterized.parameters(*environments)
def testInactionRollout(self, env_name):
self._create_baseline(env_name)
init_state = self._timestep_to_state(self._env.reset())
self._baseline.reset()
action = Actions.NOOP
state1 = init_state
trajectory = [init_state]
for _ in range(10):
trajectory.append(self._timestep_to_state(self._env.step(action)))
state2 = trajectory[-1]
self._baseline.calculate(state1, action, state2)
state1 = state2
chain = self._baseline.rollout_func(init_state)
self.assertEqual(chain, trajectory[:len(chain)])
if len(chain) < len(trajectory):
self.assertEqual(trajectory[len(chain) - 1], trajectory[len(chain)])
def testStaticRollouts(self):
self._create_baseline('box')
action_range = self._env_to_action_range(self._env)
num_steps = np.random.randint(low=1, high=20)
actions = [np.random.choice(action_range) for _ in range(num_steps)]
state1 = self._timestep_to_state(self._env.reset())
states = [state1]
self._baseline.reset()
for action in actions:
state2 = self._timestep_to_state(self._env.step(action))
states.append(state2)
self._baseline.calculate(state1, action, state2)
state1 = state2
i1, i2 = np.random.choice(len(states), 2)
chain = self._baseline.parallel_inaction_rollouts(states[i1], states[i2])
self.assertLen(chain, 1)
chain1 = self._baseline.rollout_func(states[i1])
self.assertLen(chain1, 1)
chain2 = self._baseline.rollout_func(states[i2])
self.assertLen(chain2, 1)
@parameterized.parameters(('parallel', 'vase'), ('parallel', 'sushi'),
('inaction', 'vase'), ('inaction', 'sushi'))
def testConveyorRollouts(self, which_rollout, env_name):
self._create_baseline(env_name)
init_state = self._timestep_to_state(self._env.reset())
self._baseline.reset()
action = Actions.NOOP
state1 = init_state
init_state_next = self._timestep_to_state(self._env.step(action))
state2 = init_state_next
self._baseline.calculate(state1, action, state2)
state1 = state2
for _ in range(10):
state2 = self._timestep_to_state(self._env.step(action))
self._baseline.calculate(state1, action, state2)
state1 = state2
if which_rollout == 'parallel':
chain = self._baseline.parallel_inaction_rollouts(init_state,
init_state_next)
else:
chain = self._baseline.rollout_func(init_state)
self.assertLen(chain, 5)
class NoDeviationTest(SideEffectsTestCase):
def _random_initial_transition(self):
env_name = np.random.choice(environments)
noops = np.random.choice([True, False])
env, _ = training.get_env(env_name, noops)
action_range = self._env_to_action_range(env)
action = np.random.choice(action_range)
state1 = self._timestep_to_state(env.reset())
state2 = self._timestep_to_state(env.step(action))
return (state1, state2)
def testNoDeviation(self):
deviation = side_effects_penalty.NoDeviation()
state1, state2 = self._random_initial_transition()
self.assertEqual(deviation.calculate(state1, state2), 0)
def testNoDeviationUpdate(self):
deviation = side_effects_penalty.NoDeviation()
state1, state2 = self._random_initial_transition()
deviation.update(state1, state2)
self.assertEqual(deviation.calculate(state1, state2), 0)
class UnreachabilityTest(SideEffectsTestCase):
@parameterized.named_parameters(('Discounted', 0.99), ('Undiscounted', 1.0))
def testUnreachabilityCycle(self, gamma):
# Reachability with no dev_fun means unreachability
deviation = side_effects_penalty.Reachability(value_discount=gamma)
env, _ = training.get_env('box', False)
state0 = self._timestep_to_state(env.reset())
state1 = self._timestep_to_state(env.step(Actions.LEFT))
# deviation should not be calculated before calling update
deviation.update(state0, state1)
self.assertEqual(deviation.calculate(state0, state0), 1.0 - 1.0)
self.assertEqual(deviation.calculate(state0, state1), 1.0 - gamma)
self.assertEqual(deviation.calculate(state1, state0), 1.0 - 0.0)
state2 = self._timestep_to_state(env.step(Actions.RIGHT))
self.assertEqual(state0, state2)
deviation.update(state1, state2)
self.assertEqual(deviation.calculate(state0, state0), 1.0 - 1.0)
self.assertEqual(deviation.calculate(state0, state1), 1.0 - gamma)
self.assertEqual(deviation.calculate(state1, state0), 1.0 - gamma)
self.assertEqual(deviation.calculate(state1, state1), 1.0 - 1.0)
if __name__ == '__main__':
absltest.main()