forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
51 lines (42 loc) · 1.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright 2021 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Simple script to model evaluation on a checkpoint and dataset."""
import ast
from absl import app
from absl import flags
from absl import logging
from galaxy_mergers import evaluator
flags.DEFINE_string('checkpoint_path', '', 'Path to TF2 checkpoint to eval.')
flags.DEFINE_string('data_path', '', 'Path to TFRecord(s) with data.')
flags.DEFINE_string('filter_time_intervals', None,
'Merger time intervals on which to perform regression.'
'Specify None for the default time interval [-1,1], or'
' a custom list of intervals, e.g. [[-0.2,0], [0.5,1]].')
FLAGS = flags.FLAGS
def main(_) -> None:
if FLAGS.filter_time_intervals is not None:
filter_time_intervals = ast.literal_eval(FLAGS.filter_time_intervals)
else:
filter_time_intervals = None
config, ds, experiment = evaluator.get_config_dataset_evaluator(
filter_time_intervals,
FLAGS.checkpoint_path,
config_override={
'experiment_kwargs.data_config.dataset_path': FLAGS.data_path,
})
metrics, _, _ = evaluator.run_model_on_dataset(experiment, ds, config)
logging.info('Evaluation complete. Metrics: %s', metrics)
if __name__ == '__main__':
app.run(main)