-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
87 lines (80 loc) · 3.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import sys
import numpy as np
from wxeval import wx_calc_map_label
def show_progressbar(rate, *args, **kwargs):
'''
:param rate: [current, total]
:param args: other show
'''
inx = rate[0] + 1
count = rate[1]
bar_length = 30
rate[0] = int(np.around(rate[0] * float(bar_length) / rate[1])) if rate[1] > bar_length else rate[0]
rate[1] = bar_length if rate[1] > bar_length else rate[1]
num = len(str(count))
str_show = ('\r%' + str(num) + 'd / ' + '%' + str(num) + 'd (%' + '3.2f%%) [') % (inx, count, float(inx) / count * 100)
for i in range(rate[0]):
str_show += '='
if rate[0] < rate[1] - 1:
str_show += '>'
for i in range(rate[0], rate[1] - 1, 1):
str_show += '.'
str_show += '] '
for l in args:
str_show += ' ' + str(l)
for key in kwargs:
try:
str_show += ' ' + key + ': %.4f' % kwargs[key]
except Exception:
str_show += ' ' + key + ': ' + str(kwargs[key])
if inx == count:
str_show += '\n'
sys.stdout.write(str_show)
sys.stdout.flush()
def cal_map_bi(relation_score, labels):
print('======================== Bi-modal Retrieval ==========================')
print('======================================================================')
result1_all = wx_calc_map_label(
relation_score, labels, k=0, dist_method='COS')
result2_all = wx_calc_map_label(
np.transpose(relation_score), labels, k=0, dist_method='COS')
result1_50 = wx_calc_map_label(
relation_score, labels, k=50, dist_method='COS')
result2_50 = wx_calc_map_label(
np.transpose(relation_score), labels, k=50, dist_method='COS')
print("MAP@50: Image query:{:.3f}, Text query:{:.3f}".format(result1_50, result2_50))
print("MAP@All: Image query:{:.3f}, Text query:{:.3f}".format(result1_all, result2_all))
return
# def cal_map_bi(relation_score, labels, best_map_bi_50=0., best_map_bi_all=0., current_epoch=0, dataset_name=None):
# print('======================== Bi-modal Retrieval ==========================')
# print('======================================================================')
# result1_all = wx_calc_map_label(
# relation_score, labels, k=0, dist_method='COS')
# result2_all = wx_calc_map_label(
# np.transpose(relation_score), labels, k=0, dist_method='COS')
# result1_50 = wx_calc_map_label(
# relation_score, labels, k=50, dist_method='COS')
# result2_50 = wx_calc_map_label(
# np.transpose(relation_score), labels, k=50, dist_method='COS')
# print("MAP@50: Image query:{:.3f}, Text query:{:.3f}".format(result1_50, result2_50))
# print("MAP@All: Image query:{:.3f}, Text query:{:.3f}".format(result1_all, result2_all))
#
# mean_map_50 = (result1_50 + result2_50) / 2.0
# if mean_map_50 > best_map_bi_50:
# best_map_bi_50 = mean_map_50
# print('best map@50 improves to: {:.3f}, detail: i2t: {:.3f}, t2i: {:.3f}'.format(best_map_bi_50, result1_50, result2_50))
# else:
# print('best map@50 still is: {:.3f}'.format(best_map_bi_50))
#
# mean_map_all = (result1_all + result2_all) / 2.0
# if mean_map_all > best_map_bi_all:
# best_map_bi_all = mean_map_all
# if dataset_name is not None:
# import scipy.io as sio
# # sio.savemat(dataset_name+'_latent_xentropy.mat',{'XTe1proj':img_feas, 'XTe2proj':text_feas, 'testLabel':labels})
# print('best map@All improves to: {:.3f}, detail: i2t: {:.3f}, t2i: {:.3f}'.format(best_map_bi_all, result1_all, result2_all))
# best_epoch = current_epoch
# print('best epoch: {:.3f}'.format(best_epoch))
# else:
# print('best map@All still is: {:.3f}'.format(best_map_bi_all))
# return best_map_bi_50, best_map_bi_all, best_epoch