-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
184 lines (151 loc) · 6.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import time
import copy
import torch
import torch.nn as nn
import numpy as np
# import scipy
from numpy.matlib import repmat
from loss import relation_loss
from utils import show_progressbar, cal_map_bi
# device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
def train2(model,
dataloaders,
device,
dataset_sizes,
num_epochs,
retreival=True):
since = time.time()
# optimizer
# optimizer = torch.optim.LBFGS(model.parameters())
# com_params = [model.CommonDNN.Sequential[0].weight]
grad_params = [param for param in model.parameters()
if param.requires_grad]
optimizer = torch.optim.Adam(
grad_params,
lr=1e-4,
betas=(
0.5,
0.99),
weight_decay=1e-4)
# optimizer = torch.optim.SGD(grad_params, lr=0.001, momentum=0.9, weight_decay=0.001)
# optimizer = torch.optim.ASGD(model.parameters(), lr=1e-1)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=1, gamma=0.98)
xmedianet_loss_history = []
## ======= Training =======
for epoch in range(num_epochs):
# scheduler.step()
print('Epoch {}/{}'.format(epoch + 1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'test']:
num_batch = int(
np.ceil(
dataset_sizes[phase] /
dataloaders[phase].batch_size))
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
# Iterate over data.
for i, batch in enumerate(dataloaders[phase]):
imgs, texts, labels = batch[0], batch[1], batch[2]
imgs = imgs.to(device)
texts = texts.to(device)
labels = labels.to(device)
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# # zero the parameter gradients
optimizer.zero_grad()
img_feas, text_feas = model(imgs, texts, return_relation_score=False)
# loss_1 = mcml_loss_compute(img_feas, text_feas, labels)
relation_score = model.cal_relation_score(img_feas, text_feas)
### ==== loss ==== ###
labelS = pair_similarity(labels, labels)
labelS = labelS.reshape(-1, 1)
# if i%100==0:
# print('')
# print(relation_score)
# print(labelS)
loss = relation_loss(relation_score, labelS)
# if i%1000==0:
# print('\nrelation_score:{}'.format(relation_score))
# print('\nlabelS:{}'.format(labelS))
loss = loss.to(device)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
current_loss = loss.item()
running_loss += current_loss * imgs.size(0)
# print('{} running_loss: {:.4f}'.format(phase, loss.item() * imgs.size(0)))
show_progressbar([i, num_batch], loss=current_loss)
epoch_loss = running_loss / dataset_sizes[phase]
if phase == 'train':
xmedianet_loss_history.append(epoch_loss)
import scipy.io as sio
sio.savemat('xmedianet_loss_history.mat', {'xmedianet_loss_history': xmedianet_loss_history})
print('{} Loss: {:.4f}'.format(phase, epoch_loss))
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
## ======= Testing =======
img_feas_list, text_feas_list, label_list = [], [], []
for i, batch in enumerate(dataloaders['test']):
imgs, texts, labels = batch[0], batch[1], batch[2]
imgs = imgs.to(device)
texts = texts.to(device)
img_feas, text_feas = model(imgs, texts, return_relation_score=False)
img_feas_list.append(img_feas)
text_feas_list.append(text_feas)
label_list.append(labels)
relation_score = []
for img_feas in img_feas_list:
relation_score_txt = []
for text_feas in text_feas_list:
relation_score_txtbatch = model.cal_relation_score(img_feas, text_feas)
# relation_score_txtbatch = relation_score_txtbatch.reshape(text_feas.size(0), img_feas.size(0)).t()
relation_score_txtbatch = relation_score_txtbatch.reshape(img_feas.size(0), text_feas.size(0))
relation_score_txtbatch = relation_score_txtbatch.cpu().detach().numpy()
relation_score_txt.append(relation_score_txtbatch)
relation_score_txt = np.concatenate(relation_score_txt, 1)
relation_score.append(relation_score_txt)
relation_score = np.concatenate(relation_score, 0)
labels = np.concatenate(label_list, 0)
if retreival is True:
cal_map_bi(-relation_score, labels)
else:
pass
print()
# import scipy.io as sio
# sio.savemat('xmedianet_loss_history.mat', {'xmedianet_loss_history': xmedianet_loss_history})
return model
def znorm(inMat):
col = inMat.shape[0]
row = inMat.shape[1]
mean_val = np.mean(inMat, axis=0)
std_val = np.std(inMat, axis=0)
mean_val = repmat(mean_val, col, 1)
std_val = repmat(std_val, col, 1)
x = np.argwhere(std_val == 0)
for y in x:
std_val[y[0], y[1]] = 1
return (inMat - mean_val) / std_val
def pair_similarity(x, y):
'''
x: n * dx
y: m * dy
'''
n = x.size(0)
m = y.size(0)
d = x.size(1)
x = x.unsqueeze(1).expand(n, m, d)
y = y.unsqueeze(0).expand(n, m, d)
ps = torch.eq(x,y).squeeze(2)
ps = ps.float()
# ps -= (ps == 0.).float()
return ps