forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset_mask.py
208 lines (189 loc) · 7.27 KB
/
dataset_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numbers
import os
import queue as Queue
import threading
import mxnet as mx
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import cv2
import albumentations as A
from albumentations.pytorch import ToTensorV2
from insightface.app import MaskAugmentation
class BackgroundGenerator(threading.Thread):
def __init__(self, generator, local_rank, max_prefetch=6):
super(BackgroundGenerator, self).__init__()
self.queue = Queue.Queue(max_prefetch)
self.generator = generator
self.local_rank = local_rank
self.daemon = True
self.start()
def run(self):
torch.cuda.set_device(self.local_rank)
for item in self.generator:
self.queue.put(item)
self.queue.put(None)
def next(self):
next_item = self.queue.get()
if next_item is None:
raise StopIteration
return next_item
def __next__(self):
return self.next()
def __iter__(self):
return self
class DataLoaderX(DataLoader):
def __init__(self, local_rank, **kwargs):
super(DataLoaderX, self).__init__(**kwargs)
self.stream = torch.cuda.Stream(local_rank)
self.local_rank = local_rank
def __iter__(self):
self.iter = super(DataLoaderX, self).__iter__()
self.iter = BackgroundGenerator(self.iter, self.local_rank)
self.preload()
return self
def preload(self):
self.batch = next(self.iter, None)
if self.batch is None:
return None
with torch.cuda.stream(self.stream):
for k in range(len(self.batch)):
self.batch[k] = self.batch[k].to(device=self.local_rank,
non_blocking=True)
def __next__(self):
torch.cuda.current_stream().wait_stream(self.stream)
batch = self.batch
if batch is None:
raise StopIteration
self.preload()
return batch
class MXFaceDataset(Dataset):
def __init__(self, root_dir, local_rank, aug_modes="brightness=0.1+mask=0.1"):
super(MXFaceDataset, self).__init__()
default_aug_probs = {
'brightness' : 0.2,
'blur': 0.1,
'mask': 0.1,
}
aug_mode_list = aug_modes.lower().split('+')
aug_mode_map = {}
for aug_mode_str in aug_mode_list:
_aug = aug_mode_str.split('=')
aug_key = _aug[0]
if len(_aug)>1:
aug_prob = float(_aug[1])
else:
aug_prob = default_aug_probs[aug_key]
aug_mode_map[aug_key] = aug_prob
transform_list = []
self.mask_aug = False
self.mask_prob = 0.0
key = 'mask'
if key in aug_mode_map:
self.mask_aug = True
self.mask_prob = aug_mode_map[key]
transform_list.append(
MaskAugmentation(mask_names=['mask_white', 'mask_blue', 'mask_black', 'mask_green'], mask_probs=[0.4, 0.4, 0.1, 0.1], h_low=0.33, h_high=0.4, p=self.mask_prob)
)
if local_rank==0:
print('data_transform_list:', transform_list)
print('mask:', self.mask_aug, self.mask_prob)
key = 'brightness'
if key in aug_mode_map:
prob = aug_mode_map[key]
transform_list.append(
A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=prob)
)
key = 'blur'
if key in aug_mode_map:
prob = aug_mode_map[key]
transform_list.append(
A.ImageCompression(quality_lower=30, quality_upper=80, p=prob)
)
transform_list.append(
A.MedianBlur(blur_limit=(1,7), p=prob)
)
transform_list.append(
A.MotionBlur(blur_limit=(5,12), p=prob)
)
transform_list += \
[
A.HorizontalFlip(p=0.5),
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
ToTensorV2(),
]
#here, the input for A transform is rgb cv2 img
self.transform = A.Compose(
transform_list
)
self.root_dir = root_dir
self.local_rank = local_rank
path_imgrec = os.path.join(root_dir, 'train.rec')
path_imgidx = os.path.join(root_dir, 'train.idx')
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
s = self.imgrec.read_idx(0)
header, _ = mx.recordio.unpack(s)
#print(header)
#print(len(self.imgrec.keys))
if header.flag > 0:
if len(header.label)==2:
self.imgidx = np.array(range(1, int(header.label[0])))
else:
self.imgidx = np.array(list(self.imgrec.keys))
else:
self.imgidx = np.array(list(self.imgrec.keys))
#print('imgidx len:', len(self.imgidx))
def __getitem__(self, index):
idx = self.imgidx[index]
s = self.imgrec.read_idx(idx)
header, img = mx.recordio.unpack(s)
hlabel = header.label
#print('hlabel:', hlabel.__class__)
sample = mx.image.imdecode(img).asnumpy()
if not isinstance(hlabel, numbers.Number):
idlabel = hlabel[0]
else:
idlabel = hlabel
label = torch.tensor(idlabel, dtype=torch.long)
if self.transform is not None:
sample = self.transform(image=sample, hlabel=hlabel)['image']
return sample, label
def __len__(self):
return len(self.imgidx)
if __name__ == "__main__":
import argparse, cv2, copy
parser = argparse.ArgumentParser(description='dataset test')
parser.add_argument('--dataset', type=str, help='dataset path')
parser.add_argument('--samples', type=int, default=256, help='')
parser.add_argument('--cols', type=int, default=16, help='')
args = parser.parse_args()
assert args.samples%args.cols==0
assert args.cols%2==0
samples = args.samples
cols = args.cols
rows = args.samples // args.cols
dataset = MXFaceDataset(root_dir=args.dataset, local_rank=0, aug_modes='mask=1.0')
dataset.transform = A.Compose([t for t in dataset.transform if not isinstance(t, (A.Normalize, ToTensorV2))])
dataset_0 = copy.deepcopy(dataset)
#dataset_0.transform = None
dataset_1 = copy.deepcopy(dataset)
#dataset_1.transform = A.Compose(
# [
# A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=1.0),
# A.ImageCompression(quality_lower=30, quality_upper=80, p=1.0),
# A.MedianBlur(blur_limit=(1,7), p=1.0),
# A.MotionBlur(blur_limit=(5,12), p=1.0),
# A.Affine(scale=(0.92, 1.08), translate_percent=(-0.06, 0.06), rotate=(-6, 6), shear=None, interpolation=cv2.INTER_LINEAR, p=1.0),
# ]
#)
fig = np.zeros( (112*rows, 112*cols, 3), dtype=np.uint8 )
for idx in range(samples):
if idx%2==0:
image, _ = dataset_0[idx//2]
else:
image, _ = dataset_1[idx//2]
row_idx = idx // cols
col_idx = idx % cols
fig[row_idx*112:(row_idx+1)*112, col_idx*112:(col_idx+1)*112,:] = image[:,:,::-1] # to bgr
cv2.imwrite("./datasets.png", fig)