forked from yassouali/pytorch-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
61 lines (51 loc) · 1.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import json
import argparse
import torch
import dataloaders
import models
import inspect
import math
from utils import losses
from utils import Logger
from utils.torchsummary import summary
from trainer import Trainer
def get_instance(module, name, config, *args):
# GET THE CORRESPONDING CLASS / FCT
return getattr(module, config[name]['type'])(*args, **config[name]['args'])
def main(config, resume):
train_logger = Logger()
# DATA LOADERS
train_loader = get_instance(dataloaders, 'train_loader', config)
val_loader = get_instance(dataloaders, 'val_loader', config)
# MODEL
model = get_instance(models, 'arch', config, train_loader.dataset.num_classes)
print(f'\n{model}\n')
# LOSS
loss = getattr(losses, config['loss'])(ignore_index = config['ignore_index'])
# TRAINING
trainer = Trainer(
model=model,
loss=loss,
resume=resume,
config=config,
train_loader=train_loader,
val_loader=val_loader,
train_logger=train_logger)
trainer.train()
if __name__=='__main__':
# PARSE THE ARGS
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('-c', '--config', default='config.json',type=str,
help='Path to the config file (default: config.json)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='Path to the .pth model checkpoint to resume training')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args = parser.parse_args()
config = json.load(open(args.config))
if args.resume:
config = torch.load(args.resume)['config']
if args.device:
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
main(config, args.resume)