Automated Graph Neural Network Search under Federated Learning Framework
soft:Pytorch, torch_geometric
hard:4 GPU
usage: server.py [-h] [--mode MODE]
[--code SUPERMASK SUPERMASK SUPERMASK SUPERMASK SUPERMASK SUPERMASK SUPERMASK SUPERMASK]
[--model {fl-rl,fl-darts,fl-agnns,fl-random}]
[--dataset {citeseer,physics,pubmed,corafull,cora}]
[--client CLIENT] [--save_dir SAVE_DIR]
optional arguments:
-h, --help show this help message and exit
--mode MODE test mode or not
--code SUPERMASK SUPERMASK SUPERMASK SUPERMASK SUPERMASK SUPERMASK SUPERMASK SUPERMASK
code of son net
--model {fl-rl,fl-darts,fl-agnns,fl-random}
search model
--dataset {citeseer,physics,pubmed,corafull,cora}
used dataset
--client CLIENT the number of clients in the search
--save_dir SAVE_DIR the directory to save the best code and best population
usage: client.py [-h] [--mode MODE]
[--model {fl-random,fl-darts,fl-agnns,fl-rl}]
[--client CLIENT]
optional arguments:
-h, --help show this help message and exit
--mode MODE test mode or not
--model {fl-random,fl-darts,fl-agnns,fl-rl}
search model
--client CLIENT the number of clients in the search
We prepare cora dataset in this repository and use cora as example.
1.python server.py --mode test --code 5 0 0 0 0 0 0 2 --dataset cora
2.python client.py --mode test
Please open two terminals, input the first command line into one terminal and input the second one into another terminal.
- If
connection refused
,please run test.py to unify the ip_port. - run server.py before client.py