diff --git a/colabs/mosaicml/MosaicML_Composer_and_wandb.ipynb b/colabs/mosaicml/MosaicML_Composer_and_wandb.ipynb index 6b427d89..9a36ca45 100644 --- a/colabs/mosaicml/MosaicML_Composer_and_wandb.ipynb +++ b/colabs/mosaicml/MosaicML_Composer_and_wandb.ipynb @@ -1,456 +1,506 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "0196e78a", - "metadata": {}, - "source": [ - "\"Open\n", - "" - ] - }, - { - "cell_type": "markdown", - "id": "362c2ed6", - "metadata": {}, - "source": [ - "\"Weights\n", - "\"mosaicml\"\n", - "\n", - "\n", - "\n", - "# Running fast with MosaicML Composer and Weight and Biases" - ] - }, - { - "cell_type": "markdown", - "id": "c740179e", - "metadata": {}, - "source": [ - "[MosaicML Composer](https://docs.mosaicml.com) is a library for training neural networks better, faster, and cheaper. It contains many state-of-the-art methods for accelerating neural network training and improving generalization, along with an optional Trainer API that makes composing many different enhancements easy.\n", - "\n", - "Coupled with [Weights & Biases integration](https://docs.mosaicml.com/en/v0.5.0/trainer/logging.html), you can quickly train and monitor models for full traceability and reproducibility with only 2 extra lines of code:\n", - "\n", - "```python\n", - "from composer.loggers import WandBLogger\n", - "wandb_logger = WandBLogger()\n", - "```" - ] - }, - { - "cell_type": "markdown", - "id": "0eca27e4", - "metadata": {}, - "source": [ - "W&B integration with Composer can automatically:\n", - "* log your configuration parameters\n", - "* log your losses and metrics\n", - "* log gradients and parameter distributions\n", - "* log your model\n", - "* keep track of your code\n", - "* log your system metrics (GPU, CPU, memory, temperature, etc)" - ] - }, - { - "cell_type": "markdown", - "id": "5640b1a0", - "metadata": {}, - "source": [ - "### 🛠️ Installation and set-up\n", - "\n", - "We need to install the following libraries:\n", - "* [mosaicml-composer](https://docs.mosaicml.com/en/v0.5.0/getting_started/installation.html) to set up and train our models\n", - "* [wandb](https://docs.wandb.ai/) to instrument our training" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "764b0904", - "metadata": {}, - "outputs": [], - "source": [ - "!pip install -Uq wandb mosaicml fastcore" - ] - }, - { - "cell_type": "markdown", - "id": "deb25a49", - "metadata": {}, - "source": [ - "## Getting Started with Composer 🔥" - ] - }, - { - "cell_type": "markdown", - "id": "e713fe81", - "metadata": {}, - "source": [ - "Composer gives you access to a set of functions to speedup your models and infuse them with state of the art methods. For instance, you can insert [BlurPool](https://docs.mosaicml.com/en/latest/method_cards/blurpool.html) into your CNN by calling `CF.apply_blurpool(model)` into your PyTorch model. Take a look at all the [functional](https://docs.mosaicml.com/en/latest/functional_api.html) methods available." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2c9413bd", - "metadata": {}, - "outputs": [], - "source": [ - "import logging\n", - "from composer import functional as CF\n", - "import torchvision.models as models\n", - "\n", - "logging.basicConfig(level=logging.INFO)\n", - "model = models.resnet50()\n", - "\n", - "# replace some layers with blurpool\n", - "CF.apply_blurpool(model);\n", - "# replace some layers with squeeze-excite\n", - "CF.apply_squeeze_excite(model, latent_channels=64, min_channels=128);" - ] - }, - { - "cell_type": "markdown", - "id": "0eb3e57b", - "metadata": {}, - "source": [ - "> 💡 you can use this upgraded model with your favourite PyTorch training or... " - ] - }, - { - "cell_type": "markdown", - "id": "02c31ab7", - "metadata": {}, - "source": [ - "## Use the `Trainer` class with Weights and Biases 🏋️‍♀️\n", - "\n", - "W&B integration with MosaicML-Composer is built into the `Trainer` and can be configured to add extra functionalities through `WandBLogger`:\n", - "\n", - "* logging of Artifacts: Use `log_artifacts=True` to log model checkpoints as `wandb.Artifacts`. You can setup how often by passing an int value to `log_artifacts_every_n_batches` (default = 100)\n", - "* you can also pass any parameter that you would pass to `wandb.init` in `init_params` as a dictionary. For example, you could pass `init_params = {\"project\":\"try_mosaicml\", \"name\":\"benchmark\", \"entity\":\"user_name\"}`.\n", - "\n", - "For more details refer to [Logger documentation](https://docs.mosaicml.com/en/latest/api_reference/composer.loggers.wandb_logger.html#composer.loggers.wandb_logger.WandBLogger) and [Wandb docs](https://docs.wandb.ai)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1e12ce9d", - "metadata": {}, - "outputs": [], - "source": [ - "EPOCHS = 5\n", - "BS = 32" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4dbc1493", - "metadata": {}, - "outputs": [], - "source": [ - "import wandb\n", - "\n", - "from torch.utils.data import DataLoader\n", - "from torchvision import datasets\n", - "\n", - "import torchvision.transforms as T\n", - "\n", - "from composer import Callback, State, Logger, Trainer\n", - "from composer.models import MNIST_Classifier\n", - "from composer.loggers import WandBLogger, TQDMLogger\n", - "from composer.callbacks import SpeedMonitor, LRMonitor" - ] - }, - { - "cell_type": "markdown", - "id": "ef7be365", - "metadata": {}, - "source": [ - "let's grab a copy of MNIST from `torchvision`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b298a861", - "metadata": {}, - "outputs": [], - "source": [ - "train_dataset = datasets.MNIST(\".\", train=True, download=True, transform=T.ToTensor())\n", - "eval_dataset = datasets.MNIST(\".\", train=False, download=True, transform=T.ToTensor())\n", - "\n", - "train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=BS, num_workers=2)\n", - "eval_dataloader = DataLoader(eval_dataset, batch_size=2*BS, num_workers=2)" - ] - }, - { - "cell_type": "markdown", - "id": "b798a9ed", - "metadata": {}, - "source": [ - "we can import a simple ConvNet model to try" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6498cf78", - "metadata": {}, - "outputs": [], - "source": [ - "model = MNIST_Classifier()" - ] - }, - { - "cell_type": "markdown", - "id": "8e9daaa5", - "metadata": {}, - "source": [ - "### 📊 Tracking the experiment\n", - "> we define the `wandb.init` params here" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "73bccc9f", - "metadata": {}, - "outputs": [], - "source": [ - "# config params to log\n", - "config = {\"epochs\":EPOCHS, \n", - " \"batch_size\":BS,\n", - " \"model_name\":\"MNIST_Classifier\"}\n", - "\n", - "# these will get passed to wandb.init(**init_params)\n", - "init_params = {\"project\":\"mosaic_ml\", \n", - " \"name\":\"mnist_baseline\",\n", - " \"config\":config}\n", - "\n", - "# setup of the logger \n", - "wandb_logger = WandBLogger(init_params=init_params)\n", - "\n", - "# we also add progressbar logging\n", - "progress_logger = TQDMLogger()\n", - "\n", - "loggers = [progress_logger, wandb_logger]" - ] - }, - { - "cell_type": "markdown", - "id": "0dc1f7f6", - "metadata": {}, - "source": [ - "we are able to tweak what are we logging using `Callbacks` into the `Trainer` class." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9b470f1a", - "metadata": {}, - "outputs": [], - "source": [ - "callbacks = [LRMonitor(), # Logs the learning rate\n", - " SpeedMonitor(), # Logs the training throughput\n", - " ]" - ] - }, - { - "cell_type": "markdown", - "id": "28920cc2", - "metadata": {}, - "source": [ - "we include callbacks that measure the model throughput (and the learning rate) and logs them to Weights & Biases. [Callbacks](https://docs.mosaicml.com/en/latest/trainer/callbacks.html) control what is being logged, whereas loggers specify where the information is being saved. For more information on loggers, see [Logging](https://docs.mosaicml.com/en/latest/trainer/logging.html)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d1cd982a", - "metadata": {}, - "outputs": [], - "source": [ - "trainer = Trainer(\n", - " model=model,\n", - " train_dataloader=train_dataloader,\n", - " eval_dataloader=eval_dataloader,\n", - " max_duration=f\"{EPOCHS}ep\",\n", - " loggers=loggers,\n", - " callbacks=callbacks,\n", - " device=\"gpu\", # to train on GPU\n", - " precision=\"amp\", # use mixed precision training, nice speed bump\n", - "\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "0888b0c5", - "metadata": {}, - "source": [ - "once we are ready to train we call `fit`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2ca3468a", - "metadata": {}, - "outputs": [], - "source": [ - "trainer.fit()" - ] - }, - { - "cell_type": "markdown", - "id": "598495ee", - "metadata": {}, - "source": [ - "## ⚙️ Advanced: Using callbacks to log sample predictions\n", - "\n", - "> Composer is extensible through its callback system.\n", - "\n", - "We create a custom callback to automatically log sample predictions during validation." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "00401b44", - "metadata": {}, - "outputs": [], - "source": [ - "class LogPredictions(Callback):\n", - " def __init__(self, num_samples=100):\n", - " super().__init__()\n", - " self.num_samples = num_samples\n", - " self.data = []\n", - " \n", - " def eval_batch_end(self, state: State, logger: Logger):\n", - " \"\"\"Compute predictions per batch and stores them on self.data\"\"\"\n", - " if state.timer.epoch == state.max_duration: # on last val epoch\n", - " if len(self.data) < self.num_samples:\n", - " n = self.num_samples\n", - " x, y = state.batch_pair\n", - " outputs = state.outputs.argmax(-1)\n", - " data = [[wandb.Image(x_i), y_i, y_pred] for x_i, y_i, y_pred in list(zip(x[:n], y[:n], outputs[:n]))]\n", - " self.data += data\n", - " \n", - " def eval_end(self, state: State, logger: Logger):\n", - " \"Create a wandb.Table and logs it\"\n", - " columns = ['image', 'ground truth', 'prediction']\n", - " table = wandb.Table(columns=columns, data=self.data[:self.num_samples])\n", - " wandb.log({'predictions_table':table}, step=int(state.timer.batch))" - ] - }, - { - "cell_type": "markdown", - "id": "6161475c", - "metadata": {}, - "source": [ - "we add `LogPredictions` to the other callbacks" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "94d39bd5", - "metadata": {}, - "outputs": [], - "source": [ - "callbacks.append(LogPredictions())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8ea986a8", - "metadata": {}, - "outputs": [], - "source": [ - "trainer = Trainer(\n", - " model=model,\n", - " train_dataloader=train_dataloader,\n", - " eval_dataloader=eval_dataloader,\n", - " max_duration=f\"{EPOCHS}ep\",\n", - " loggers=loggers,\n", - " callbacks=callbacks,\n", - " device=\"gpu\", # to train on GPU\n", - " precision=\"amp\", # use mixed precision training, nice speed bump\n", - "\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "a4deb712", - "metadata": {}, - "source": [ - "Once we're ready to train, we just call the `fit` method." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c8b00679", - "metadata": {}, - "outputs": [], - "source": [ - "trainer.fit()" - ] - }, - { - "cell_type": "markdown", - "id": "2c2e89f6", - "metadata": {}, - "source": [ - "We can monitor losses, metrics, gradients, parameters and sample predictions as the model trains." - ] - }, - { - "cell_type": "markdown", - "id": "f4889215", - "metadata": {}, - "source": [ - "![composer.png](https://i.imgur.com/VFZLOB3.png?1)" - ] - }, - { - "cell_type": "markdown", - "id": "97f57640", - "metadata": {}, - "source": [ - "## 📚 Resources\n", - "\n", - "* We are excited to showcase this early support of [MosaicML-Composer](https://docs.mosaicml.com/en/latest/index.html) go ahead and try this new state of the art framework." - ] - }, - { - "cell_type": "markdown", - "id": "c6722706", - "metadata": {}, - "source": [ - "## ❓ Questions about W&B\n", - "\n", - "If you have any questions about using W&B to track your model performance and predictions, please reach out to the [wandb community](https://community.wandb.ai)." - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "include_colab_link": true, - "provenance": [], - "toc_visible": true - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} + "cells": [ + { + "cell_type": "markdown", + "id": "0196e78a", + "metadata": { + "id": "0196e78a" + }, + "source": [ + "\"Open\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "362c2ed6", + "metadata": { + "id": "362c2ed6" + }, + "source": [ + "\"Weights\n", + "\"mosaicml\"\n", + "\n", + "\n", + "\n", + "# Running fast with MosaicML Composer and Weight and Biases" + ] + }, + { + "cell_type": "markdown", + "id": "c740179e", + "metadata": { + "id": "c740179e" + }, + "source": [ + "[MosaicML Composer](https://docs.mosaicml.com) is a library for training neural networks better, faster, and cheaper. It contains many state-of-the-art methods for accelerating neural network training and improving generalization, along with an optional Trainer API that makes composing many different enhancements easy.\n", + "\n", + "Coupled with [Weights & Biases integration](https://docs.wandb.ai/guides/integrations/composer), you can quickly train and monitor models for full traceability and reproducibility with only 2 extra lines of code:\n", + "\n", + "```python\n", + "from composer import Trainer\n", + "from composer.loggers import WandBLogger\n", + "\n", + "wandb_logger = WandBLogger(init_params=init_params)\n", + "trainer = Trainer(..., logger=wandb_logger)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "0eca27e4", + "metadata": { + "id": "0eca27e4" + }, + "source": [ + "W&B integration with Composer can automatically:\n", + "* log your configuration parameters\n", + "* log your losses and metrics\n", + "* log gradients and parameter distributions\n", + "* log your model\n", + "* keep track of your code\n", + "* log your system metrics (GPU, CPU, memory, temperature, etc)" + ] + }, + { + "cell_type": "markdown", + "id": "5640b1a0", + "metadata": { + "id": "5640b1a0" + }, + "source": [ + "### 🛠️ Installation and set-up\n", + "\n", + "We need to install the following libraries:\n", + "* [mosaicml-composer](https://docs.mosaicml.com/en/v0.5.0/getting_started/installation.html) to set up and train our models\n", + "* [wandb](https://docs.wandb.ai/) to instrument our training" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "764b0904", + "metadata": { + "id": "764b0904" + }, + "outputs": [], + "source": [ + "!pip install -Uq wandb mosaicml" + ] + }, + { + "cell_type": "markdown", + "id": "02c31ab7", + "metadata": { + "id": "02c31ab7" + }, + "source": [ + "## Use the Composer `Trainer` class with Weights and Biases 🏋️‍♀️\n", + "\n", + "W&B integration with MosaicML-Composer is built into the `Trainer` and can be configured to add extra functionalities through `WandBLogger`:\n", + "\n", + "* logging of Artifacts: Use `log_artifacts=True` to log model checkpoints as `wandb.Artifacts`. You can setup how often by passing an int value to `log_artifacts_every_n_batches` (default = 100)\n", + "* you can also pass any parameter that you would pass to `wandb.init` in `init_params` as a dictionary. For example, you could pass `init_params = {\"project\":\"try_mosaicml\", \"name\":\"benchmark\", \"entity\":\"user_name\"}`.\n", + "\n", + "For more details refer to [Logger documentation](https://docs.mosaicml.com/en/latest/api_reference/composer.loggers.wandb_logger.html#composer.loggers.wandb_logger.WandBLogger) and [Wandb docs](https://docs.wandb.ai)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "1e12ce9d", + "metadata": { + "id": "1e12ce9d" + }, + "outputs": [], + "source": [ + "EPOCHS = 5\n", + "BS = 32" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4dbc1493", + "metadata": { + "id": "4dbc1493" + }, + "outputs": [], + "source": [ + "import wandb\n", + "\n", + "from torchvision import datasets, transforms\n", + "from torch.utils.data import DataLoader\n", + "\n", + "from composer import Callback, State, Logger, Trainer\n", + "from composer.models import mnist_model\n", + "from composer.loggers import WandBLogger\n", + "from composer.callbacks import SpeedMonitor, LRMonitor\n", + "from composer.algorithms import LabelSmoothing, CutMix, ChannelsLast" + ] + }, + { + "cell_type": "markdown", + "id": "ef7be365", + "metadata": { + "id": "ef7be365" + }, + "source": [ + "let's grab a copy of MNIST from `torchvision`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b298a861", + "metadata": { + "id": "b298a861" + }, + "outputs": [], + "source": [ + "transform = transforms.Compose([transforms.ToTensor()])\n", + "dataset = datasets.MNIST(\"data\", train=True, download=True, transform=transform)\n", + "train_dataloader = DataLoader(dataset, batch_size=128)" + ] + }, + { + "cell_type": "markdown", + "id": "b798a9ed", + "metadata": { + "id": "b798a9ed" + }, + "source": [ + "we can import a simple ConvNet model to try" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6498cf78", + "metadata": { + "id": "6498cf78" + }, + "outputs": [], + "source": [ + "model = mnist_model(num_classes=10)" + ] + }, + { + "cell_type": "markdown", + "id": "8e9daaa5", + "metadata": { + "id": "8e9daaa5" + }, + "source": [ + "### 📊 Tracking the experiment\n", + "> we define the `wandb.init` params here" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "73bccc9f", + "metadata": { + "id": "73bccc9f" + }, + "outputs": [], + "source": [ + "# config params to log\n", + "config = {\"epochs\":EPOCHS,\n", + " \"batch_size\":BS,\n", + " \"model_name\":\"MNIST_Classifier\"}\n", + "\n", + "# these will get passed to wandb.init(**init_params)\n", + "wandb_init_kwargs = {\"config\":config}\n", + "\n", + "# setup of the logger\n", + "wandb_logger = WandBLogger(project=\"mnist-composer\",\n", + " log_artifacts=True,\n", + " init_kwargs=wandb_init_kwargs)" + ] + }, + { + "cell_type": "markdown", + "id": "0dc1f7f6", + "metadata": { + "id": "0dc1f7f6" + }, + "source": [ + "we are able to tweak what are we logging using `Callbacks` into the `Trainer` class." + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "9b470f1a", + "metadata": { + "id": "9b470f1a" + }, + "outputs": [], + "source": [ + "callbacks = [LRMonitor(), # Logs the learning rate\n", + " SpeedMonitor(), # Logs the training throughput\n", + " ]" + ] + }, + { + "cell_type": "markdown", + "id": "28920cc2", + "metadata": { + "id": "28920cc2" + }, + "source": [ + "we include callbacks that measure the model throughput (and the learning rate) and logs them to Weights & Biases. [Callbacks](https://docs.mosaicml.com/en/latest/trainer/callbacks.html) control what is being logged, whereas loggers specify where the information is being saved. For more information on loggers, see [Logging](https://docs.mosaicml.com/en/latest/trainer/logging.html)." + ] + }, + { + "cell_type": "code", + "source": [ + "trainer = Trainer(\n", + " model=mnist_model(num_classes=10),\n", + " train_dataloader=train_dataloader,\n", + " max_duration=\"2ep\",\n", + " loggers=[wandb_logger], # Pass your WandbLogger\n", + " callbacks=callbacks,\n", + " algorithms=[\n", + " LabelSmoothing(smoothing=0.1),\n", + " CutMix(alpha=1.0),\n", + " ChannelsLast(),\n", + " ]\n", + ")" + ], + "metadata": { + "id": "kmUiJQZoGU5D" + }, + "id": "kmUiJQZoGU5D", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "id": "0888b0c5", + "metadata": { + "id": "0888b0c5" + }, + "source": [ + "once we are ready to train we call `fit`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2ca3468a", + "metadata": { + "id": "2ca3468a" + }, + "outputs": [], + "source": [ + "trainer.fit()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "We close the Trainer to properly finish all callbacks and loggers" + ], + "metadata": { + "id": "_4U7TodlIgPy" + }, + "id": "_4U7TodlIgPy" + }, + { + "cell_type": "code", + "source": [ + "trainer.close()" + ], + "metadata": { + "id": "dTWX_MFZIfSF" + }, + "id": "dTWX_MFZIfSF", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "id": "598495ee", + "metadata": { + "id": "598495ee" + }, + "source": [ + "## ⚙️ Advanced: Using callbacks to log sample predictions\n", + "\n", + "> Composer is extensible through its callback system.\n", + "\n", + "We create a custom callback to automatically log sample predictions during validation." + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "00401b44", + "metadata": { + "id": "00401b44" + }, + "outputs": [], + "source": [ + "class LogPredictions(Callback):\n", + " def __init__(self, num_samples=100):\n", + " super().__init__()\n", + " self.num_samples = num_samples\n", + " self.data = []\n", + "\n", + " def batch_end(self, state: State, logger: Logger):\n", + " \"\"\"Compute predictions per batch and stores them on self.data\"\"\"\n", + " if len(self.data) < self.num_samples:\n", + " n = self.num_samples\n", + " x, y = state.batch\n", + " outputs = state.outputs.argmax(-1)\n", + " data = [[wandb.Image(x_i), y_i, y_pred] for x_i, y_i, y_pred in list(zip(x[:n], y[:n], outputs[:n]))]\n", + " self.data += data\n", + "\n", + " def epoch_end(self, state: State, logger: Logger):\n", + " \"Create a wandb.Table and logs it\"\n", + " columns = ['image', 'ground truth', 'prediction']\n", + " table = wandb.Table(columns=columns, data=self.data[:self.num_samples])\n", + " wandb.log({'predictions_table':table}, step=int(state.timestamp.batch))" + ] + }, + { + "cell_type": "markdown", + "id": "6161475c", + "metadata": { + "id": "6161475c" + }, + "source": [ + "we add `LogPredictions` to the other callbacks" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "94d39bd5", + "metadata": { + "id": "94d39bd5" + }, + "outputs": [], + "source": [ + "callbacks.append(LogPredictions())" + ] + }, + { + "cell_type": "code", + "source": [ + "trainer.close()" + ], + "metadata": { + "id": "8qXCtgRWM1ke" + }, + "id": "8qXCtgRWM1ke", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8ea986a8", + "metadata": { + "id": "8ea986a8" + }, + "outputs": [], + "source": [ + "trainer = Trainer(\n", + " model=mnist_model(num_classes=10),\n", + " train_dataloader=train_dataloader,\n", + " max_duration=\"2ep\",\n", + " loggers=[wandb_logger], # Pass your WandbLogger\n", + " callbacks=callbacks,\n", + " algorithms=[\n", + " LabelSmoothing(smoothing=0.1),\n", + " CutMix(alpha=1.0),\n", + " ChannelsLast(),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "a4deb712", + "metadata": { + "id": "a4deb712" + }, + "source": [ + "Once we're ready to train, we just call the `fit` method." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8b00679", + "metadata": { + "id": "c8b00679" + }, + "outputs": [], + "source": [ + "trainer.fit()\n", + "trainer.close()" + ] + }, + { + "cell_type": "markdown", + "id": "2c2e89f6", + "metadata": { + "id": "2c2e89f6" + }, + "source": [ + "We can monitor losses, metrics, gradients, parameters and sample predictions as the model trains." + ] + }, + { + "cell_type": "markdown", + "id": "f4889215", + "metadata": { + "id": "f4889215" + }, + "source": [ + "![composer.png](https://i.imgur.com/VFZLOB3.png?1)" + ] + }, + { + "cell_type": "markdown", + "id": "97f57640", + "metadata": { + "id": "97f57640" + }, + "source": [ + "## 📚 Resources\n", + "\n", + "* We are excited to showcase this early support of [MosaicML-Composer](https://docs.mosaicml.com/en/latest/index.html) go ahead and try this new state of the art framework." + ] + }, + { + "cell_type": "markdown", + "id": "c6722706", + "metadata": { + "id": "c6722706" + }, + "source": [ + "## ❓ Questions about W&B\n", + "\n", + "If you have any questions about using W&B to track your model performance and predictions, please reach out to the [wandb community](https://community.wandb.ai)." + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file