diff --git a/cdc_total_us_deaths_analysis.py b/cdc_total_us_deaths_analysis.py deleted file mode 100644 index edcc21b..0000000 --- a/cdc_total_us_deaths_analysis.py +++ /dev/null @@ -1,78 +0,0 @@ -""" -CDC Total United States Yearly Deaths - Visualized by week -Author: Dan Wallace -Date: 09/29/2020 -Download 'Weekly Deaths by State and Age' from this CDC Link (csv format): https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm -Save to a folder, copy the file path and paste inside path='____" below (example included, will not work until you a provide propper file path) -""" -import numpy as np -import pandas as pd # Imports Panda's Library -import matplotlib.pyplot as plt -from matplotlib.pyplot import axes # Imports matplotlib.pyplot and renames it to plt # from matplot -import matplotlib as mpl # Imports matplotlib and renames it to mp1 -from matplotlib import style # In the matplotlib library, import style - -#------------------------------------------------- -# Paste csv file path here -#------------------------------------------------- - -path = 'C:/Users/Dan/Documents/cdcData/updatadata.csv' - -#------------------------------------------------- -# Create dataFrame -#------------------------------------------------- - -# Creates a dataFrame named 'df' and used pd(pandas) to read the csv file above, and sets the index column to 'Week Ending Date' -df = pd.read_csv(path, index_col=['Week Ending Date']) - -# Displays the Column Names/Data Count/Object Type contained in the dataframe -df.info() - -#------------------------------------------------- -# dataFrame collection/organization -#------------------------------------------------- - -us_note = df['Week'] <= 30 -print(us_note) - -final_note = df[us_note] -print(final_note) - -us_unweighted = final_note['Type']=='Unweighted' -print(us_unweighted) - -final = final_note[us_unweighted] -print(final) - -df_us = final['Jurisdiction']=='United States' -print(df_us) - -final_us = final[df_us] -print(final_us.info()) - -# ct_deaths calls the pandas library and uses the crosstab() function to arrange the data -# in a way that we can plot the total deaths in the US by year against the weeks in the year -ct_deaths = pd.crosstab(final_us['Week'],final_us['Year'],values=final_us['Number of Deaths'],aggfunc="sum") - -#------------------------------------------------- -# Begin Plotting -#------------------------------------------------- - -mpl.rc('figure', figsize=(8, 6)) # Sets the figure size width and height -mpl.__version__ # Outputs MatPlotLib version number in terminal -style.use('seaborn-muted') # Graph theme -mpl.rc('lines', linewidth=3) # Style of graph to use - -ct_deaths.plot(label='Number of Deaths').grid(color='lightgrey', linestyle='solid') # Plots the Number of deaths to the graph - -plt.title('United States 2015-2020: Total Deaths by Week \n (All Age Groups Through First 15 Weeks)', fontsize=14) -plt.ylabel('Number of Deaths', fontsize=13) # Changes the y-axis label to 'Number of Deaths' -plt.xlabel('Week', fontsize=13) # Changes the x-axis label to 'Deaths Reported by Week' -plt.subplot(111).set_xlim(1, 30) -dim=np.arange(1,31,1) -dim2=np.arange(45000,90000,5000) -plt.xticks(dim, fontsize=11) -plt.yticks(dim2, fontsize=11) - -plt.show() # Opens a window with the resulting graph -