This is an basic Device Management client example for Mbed OS with the following features:
- Support for latest Mbed OS and Device Management Client releases.
- Support for Developer mode provisioning.
- Support for FW Update.
There is a more advanced example of the client with support for multiple operating systems in mbed-cloud-client-example repository. The underlying client library is the same for both. This Mbed OS only example is simpler as it only supports one OS with a limited set of demonstrated features. If you want to do development in Linux and Mbed OS at the same time - you should use the mbed-cloud-client-example.
Note: If you want to use production provisioning modes, or use more advanced client features, those are demonstrated via mbed-cloud-client-example.
This table shows a list of boards that are supported.
Board | Connectivity | Storage for credentials and FW candidate | Notes |
---|---|---|---|
NXP K64F |
Ethernet | Internal Flash | |
NXP K66F |
Ethernet | Internal Flash | |
ST NUCLEO_F429ZI |
Ethernet | Internal Flash | |
ST NUCLEO_F411RE |
Wi-Fi ESP8266 | SD card | |
Ublox UBLOX_EVK_ODIN_W2 |
Wi-Fi | SD card | |
ST DISCO_L475VG_IOT01A |
Wi-Fi | QSPIF |
Build-only = This target is currently verified only via compilation, and is not verified at runtime.
This section is intended for developers to get started, import the example application, compile and get it running on their device.
-
Mbed CLI >= 1.10.0
For instructions on installing and using Mbed CLI, please see our documentation.
-
Install the
CLOUD_SDK_API_KEY
mbed config -G CLOUD_SDK_API_KEY ak_1MDE1...<snip>
You should generate your own API key. Pelion Device Management is available for any Mbed developer. Create a free trial.
For instructions on how to generate your API key, please see our documentation.
This repository is in the process of being updated and depends on few enhancements being deployed in mbed-cloud-client. In the meantime, follow these steps to import and apply the patches before compiling.
```
mbed import mbed-os-example-pelion
cd mbed-os-example-pelion
```
mbed target K64F
mbed toolchain GCC_ARM
mbed device-management init -d arm.com --model-name example-app --force -q
mbed compile
- Initialize, connect and register to Pelion DM
- Interact with the user through the serial port (115200 bauds)
- Press enter through putty/minicom to simulate button
- Press 'i' to print endpoint name
- Press Ctrl-C to to unregister
- Press 'r' to reset storage and reboot (warning: it generates a new device ID!)
Check the public tutorial for further information:
https://www.pelion.com/docs/device-management/current/connecting/mbed-os.html
-
Device initializes but can't register to Pelion
Error:
client_error(3) -> Bootstrap server URL is not correctly formed
Solution: Format the the storage by pressing 'r' in the serial terminal.
There are many steps involved in this process. We generally recomend the following steps:
- Configure the application using
mbed_app.json
- Configure the default connectivity
- Configure the KVSTORE area to store credentials (internal or external memory)
- Build the application, program the board and observe whether the application can connect to Pelion DM by using a serial terminal.
- Configure the bootloader using
bootloader_app.json
- Configure the KVSTORE area
- Configure the FW Candidate Storage
- Build bootloader application, program the board and observe whether this is able to boot.
- Enable application with bootloader using
mbed_app.json
- Enable the usage of the bootloader
- Ensure the KVSTORE addresses and FW Candidate storage addresses match with the bootloader configuration
- Build the application again (this time combined with bootloader) and check whether it can boot and connect to Pelion DM.
- Perform a FW Update and check whether the process can be completed succesfully.
Note: consider allocating the credentials on internal flash to simplify the application setup process. In addition, consider the use of internal flash to store the firmware candidate image for the FW update process as this would remove the need to use external components. If there isn't enough space, you may need to enable external storage (SD Card, SPI, etc).
Mbed OS boards should have a default configuration for connectivity and storage in Mbed OS (targets.json
).
You can extend or override the default configuration using mbed_app.json
in this application. Create a new entry under the target name for your device.
Specify the default IP connectivity type for your target. It's essential with targets that lack default connectivity set in targets.json
or for targets that support multiple connectivity options. For example:
"target.network-default-interface-type" : "ETHERNET",
The possible options are ETHERNET
, WIFI
and CELLULAR
.
Depending on connectivity type, you might have to specify more configuration options. Review the documentation for further information.
Start by getting familiar with the multiple storage options and configurations supported in Mbed OS.
Then start designing the system memory map, the location of components (whether they are on internal or external memory), and the corresponding base addresses and sizes. You may want to create a diagram similar to the one below to help you to make design decisions:
+--------------------------+
| |
| |
| |
|Firmware Candidate Storage|
| |
| |
| |
+--------------------------+ <-+ update-client.storage-address
| |
| KVSTORE |
| |
+--------------------------+ <-+ storage_tdb_internal.internal_base_address
| |
| Free space |
| |
+--------------------------+
| |
| |
| Active App |
| |
| |
| |
+--------------------------+ <-+ mbed-bootloader.application-start-address
|Active App Metadata Header|
+--------------------------+ <-+ update-client.application-details
| |
| Bootloader |
| |
+--------------------------+ <-+ 0
In cases where the MCU has two separate memory banks, it's appropiate to allocate the bootloader and base application in one bank, and KVSTORE storage at the begining of the second bank followed by a firmware candidate storage.
-
Option 1: Allocating credentials in internal memory
This is the preferred option whenever possible. Make sure
TDB_INTERNAL
is the type of storage selected inmbed_app.json
. Specify the base address depending on the available memory in the system. The size of this section should be aligned with the flash erase sector. The value should be multiple of 4 with a minimum of 24KB and upwards depending on the use case (for example the usage of certificate chain will increase the need of storage to hold those certificates). An example of this configuration can be seen for theNUCLEO_F429ZI
board in this application."storage.storage_type" : "TDB_INTERNAL" "storage_tdb_internal.internal_base_address": "(MBED_ROM_START+1024*1024)", "storage_tdb_internal.internal_size" : "(128*1024)",
-
Option 2: Allocating credentials in external memory:
This is possible when the board has an storage device wired to the MCU (could be on-board or external component). Make sure
FILESYSTEM
is specified as type of storage. The blockdevice and filesystem should be one of the supported in Mbed OS (see docs).An example of this configuration can be seen for the
K64F
board in the mbed-cloud-client-example"storage.storage_type" : "FILESYSTEM", "storage_filesystem.blockdevice" : "SD", "storage_filesystem.filesystem" : "LITTLE", "storage_filesystem.internal_base_address" : "(32*1024)", "storage_filesystem.rbp_internal_size" : "(8*1024)", "storage_filesystem.external_base_address" : "(0x0)", "storage_filesystem.external_size" : "(1024*1024*64)",
Before enabling FW updates, it's recomended that the application is able to initialize the network and connect to Pelion DM.
Once the connection is successfull, you can follow the steps below to enable the board to receive FW updates. Note the configuration for the application in this section should match with the one on the bootloader - see section below.
-
Common configuration
Regardless of where the firmware candidate is located (internal or external), there is a need to have a bootloader in place. The binary of the booloader can be specified with the
bootloader_img
option. The address and size of the bootloader determines theapplication-details
andbootloader-details
options. The value ofbootloader-details
can be obtained by running the binary on the target and observing the serial output.Review the mbed-bootloader guidelines on how these options should be selected. Review the bootloader configuration section below for more information.
Copy the compiled bootloader from
mbed-bootloader/BUILDS/<TARGET>/<TOOLCHAIN>-TINY/mbed-bootloader.bin
tobootloader/mbed-bootloader-<TARGET>.bin
.Edit
mbed-os-pelion-example/mbed_app.json
and modify the target configuration to match with the one inbootloader_app.json
.
Note:
-
update-client.application-details
should be identical in bothbootloader_app.json
andmbed_app.json
. -
target.app_offset
is relative offset toflash-start-address
you specified inmbed_app.json
andbootloader_app.json
, and is the hex value of the offset specified byapplication-start-address
inbootloader_app.json
. For example,(MBED_CONF_APP_FLASH_START_ADDRESS+65*1024)
dec equals0x10400
hex. -
target.header_offset
is also relative offset to theflash-start-address
you specified in thebootloader_app.json
, and is the hex value of the offset specified byupdate-client.application-details
. For example,(MBED_CONF_APP_FLASH_START_ADDRESS+64*1024)
dec equals0x10000
hex.
An example of this configuration can be seen for the NUCLEO_F429ZI
board.
"update-client.application-details" : "(MBED_ROM_START + MBED_BOOTLOADER_SIZE)",
"update-client.bootloader-details" : "0x08007300",
"target.bootloader_img" : "bootloader/mbed-bootloader-<target>",
"target.header_offset" : "0x8000",
"target.app_offset" : "0x8400",
-
Option 1: Allocating the firmware update candidate in internal memory
This is the preferred option whenever possible. Make sure
ARM_UCP_FLASHIAP
is selected inupdate-storage
inmbed_app.json
. This area should be located at the end of the flash after the KVSTORE area. Specify thestorage-address
,storage-size
andstorage-page
as required. Theapplication-details
option should point at the end of the bootloader area. An example of this configuration can be seen for theNUCLEO_F429ZI
board."mbed-cloud-client.update-storage" : "ARM_UCP_FLASHIAP", "update-client.storage-address" : "(MBED_CONF_STORAGE_TDB_INTERNAL_INTERNAL_BASE_ADDRESS+MBED_CONF_STORAGE_TDB_INTERNAL_INTERNAL_SIZE)", "update-client.storage-size" : "(1024*1024-MBED_CONF_STORAGE_TDB_INTERNAL_INTERNAL_SIZE)", "update-client.storage-page" : 1,
-
Option 2: Allocating the firmware update candidate in external memory
When using an external device to the MCU to store the firmware candidate, make sure ARM_UCP_FLASHIAP_BLOCKDEVICE
is specified as type of update-storage
. Specify the storage-address
, storage-size
and storage-page
as required.
An example of this configuration can be seen for the K64F
board in the mbed-cloud-client-example
"mbed-cloud-client.update-storage" : "ARM_UCP_FLASHIAP_BLOCKDEVICE",
"update-client.storage-address" : "(1024*1024*64)",
"update-client.storage-size" : "((MBED_ROM_START + MBED_ROM_SIZE - APPLICATION_ADDR) * MBED_CONF_UPDATE_CLIENT_STORAGE_LOCATIONS)",
The bootloader is required to perform FW Updates. The steps below explain how to create a new configuration and binary for the bootloader.
-
Import as a new application the mbed-bootloader repository.
-
Edit the bootloader application configuration in this example (
bootloader/bootloader_app.json
) and add a new target entry. An example of this configuration can be seen for theNUCLEO_F429ZI
board:"update-client.firmware-header-version" : "2", "mbed-bootloader.use-kvstore-rot" : 0, "mbed-bootloader.bootloader-size" : "APPLICATION_SIZE", "update-client.application-details" : "(MBED_ROM_START + MBED_BOOTLOADER_SIZE)", "mbed-bootloader.application-start-address": "(MBED_CONF_UPDATE_CLIENT_APPLICATION_DETAILS + MBED_BOOTLOADER_ACTIVE_HEADER_REGION_SIZE)", "mbed-bootloader.max-application-size" : "(MBED_ROM_START + MBED_BOOTLOADER_FLASH_BANK_SIZE - MBED_CONF_MBED_BOOTLOADER_APPLICATION_START_ADDRESS)", "update-client.storage-address" : "(MBED_ROM_START + MBED_BOOTLOADER_FLASH_BANK_SIZE + KVSTORE_SIZE)", "update-client.storage-size" : "(MBED_BOOTLOADER_FLASH_BANK_SIZE - KVSTORE_SIZE)", "update-client.storage-locations" : 1, "kvstore-size" : "2*64*1024", "update-client.storage-page" : 1
-
Compile the bootloader using the
bootloader_app.json
configuration you've just edited:mbed compile -t <TOOLCHAIN> -m <TARGET> --profile=tiny.json --app-config=.../mbed-os-pelion-example/bootloader/bootloader_app.json>
Note: mbed-bootloader
is primarily optimized for GCC_ARM
, so you may want to compile it with that toolchain.
Before jumping to the next step, you should compile and flash the bootloader and then connect over the virtual serial port to ensure the bootloader is running correctly. You can ignore errors related to checksum verification or failure to jump to application - these are expected at this stage.
The board needs to pass the underlying Mbed OS tests and be supported by official Mbed OS release.
-
Mbed OS tests (as described in our documentation)
cd mbed-os
mbed test -m <target> -t <toolchain>
-
Mbed OS integration tests
See mbed-os/TESTS/integration/README.md (sip-workshop branch)
cd mbed-os
mbed test -t <toolchain> -m <board> -n *integration-* -DINTEGRATION_TESTS -v
Basic pelion features are required to work:
- Connects to Pelion in developer mode.
- Firmware can be updated.
- Responsive to REST API commands.
This should be verified by executing the Pelion E2E python test library tests.
-
Install the prerequisites listed in the README of the pelion-e2e-python-test-library.
-
Configure your API-key as instructed in the same README.
-
Basic tests can be then executed as:
pytest TESTS/pelion-e2e-python-test-library/tests/dev-client-tests.py
After the first test starts running, press the reset-button on your board to start bootstrap/registration.
Note: Future version will bring in also firmware update test as part of the minimum test set..
Please review existing issues on github and report any problem you may see.