forked from CasiaFan/Dataset_to_VOC_converter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vbb2voc.py
executable file
·164 lines (151 loc) · 6.21 KB
/
vbb2voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os, glob
import cv2
from scipy.io import loadmat
from collections import defaultdict
import numpy as np
from lxml import etree, objectify
def vbb_anno2dict(vbb_file, cam_id):
filename = os.path.splitext(os.path.basename(vbb_file))[0]
annos = defaultdict(dict)
vbb = loadmat(vbb_file)
# object info in each frame: id, pos, occlusion, lock, posv
objLists = vbb['A'][0][0][1][0]
objLbl = [str(v[0]) for v in vbb['A'][0][0][4][0]]
# person index
person_index_list = np.where(np.array(objLbl) == "person")[0]
for frame_id, obj in enumerate(objLists):
if len(obj) > 0:
frame_name = str(cam_id) + "_" + str(filename) + "_" + str(frame_id+1) + ".jpg"
annos[frame_name] = defaultdict(list)
annos[frame_name]["id"] = frame_name
annos[frame_name]["label"] = "person"
for id, pos, occl in zip(obj['id'][0], obj['pos'][0], obj['occl'][0]):
id = int(id[0][0]) - 1 # for matlab start from 1 not 0
if not id in person_index_list: # only use bbox whose label is person
continue
pos = pos[0].tolist()
occl = int(occl[0][0])
annos[frame_name]["occlusion"].append(occl)
annos[frame_name]["bbox"].append(pos)
if not annos[frame_name]["bbox"]:
del annos[frame_name]
return annos
def seq2img(annos, seq_file, outdir, cam_id):
cap = cv2.VideoCapture(seq_file)
index = 1
# captured frame list
v_id = os.path.splitext(os.path.basename(seq_file))[0]
cap_frames_index = np.sort([int(os.path.splitext(id)[0].split("_")[2]) for id in annos.keys()])
while True:
ret, frame = cap.read()
if ret:
if not index in cap_frames_index:
index += 1
continue
if not os.path.exists(outdir):
os.makedirs(outdir)
outname = os.path.join(outdir, str(cam_id)+"_"+v_id+"_"+str(index)+".jpg")
print "Current frame: ", v_id, str(index)
cv2.imwrite(outname, frame)
height, width, _ = frame.shape
else:
break
index += 1
img_size = (width, height)
return img_size
def instance2xml_base(anno, img_size, bbox_type='xyxy'):
"""bbox_type: xyxy (xmin, ymin, xmax, ymax); xywh (xmin, ymin, width, height)"""
assert bbox_type in ['xyxy', 'xywh']
E = objectify.ElementMaker(annotate=False)
anno_tree = E.annotation(
E.folder('VOC2014_instance/person'),
E.filename(anno['id']),
E.source(
E.database('Caltech pedestrian'),
E.annotation('Caltech pedestrian'),
E.image('Caltech pedestrian'),
E.url('None')
),
E.size(
E.width(img_size[0]),
E.height(img_size[1]),
E.depth(3)
),
E.segmented(0),
)
for index, bbox in enumerate(anno['bbox']):
bbox = [float(x) for x in bbox]
if bbox_type == 'xyxy':
xmin, ymin, w, h = bbox
xmax = xmin+w
ymax = ymin+h
else:
xmin, ymin, xmax, ymax = bbox
E = objectify.ElementMaker(annotate=False)
anno_tree.append(
E.object(
E.name(anno['label']),
E.bndbox(
E.xmin(xmin),
E.ymin(ymin),
E.xmax(xmax),
E.ymax(ymax)
),
E.difficult(0),
E.occlusion(anno["occlusion"][index])
)
)
return anno_tree
def parse_anno_file(vbb_inputdir, seq_inputdir, vbb_outputdir, seq_outputdir):
# annotation sub-directories in hda annotation input directory
assert os.path.exists(vbb_inputdir)
sub_dirs = os.listdir(vbb_inputdir)
for sub_dir in sub_dirs:
print "Parsing annotations of camera: ", sub_dir
cam_id = sub_dir
vbb_files = glob.glob(os.path.join(vbb_inputdir, sub_dir, "*.vbb"))
for vbb_file in vbb_files:
annos = vbb_anno2dict(vbb_file, cam_id)
if annos:
vbb_outdir = os.path.join(vbb_outputdir, "annotations", sub_dir, "bbox")
# extract frames from seq
seq_file = os.path.join(seq_inputdir, sub_dir, os.path.splitext(os.path.basename(vbb_file))[0]+".seq")
seq_outdir = os.path.join(seq_outputdir, sub_dir, "frame")
if not os.path.exists(vbb_outdir):
os.makedirs(vbb_outdir)
if not os.path.exists(seq_outdir):
os.makedirs(seq_outdir)
img_size = seq2img(annos, seq_file, seq_outdir, cam_id)
for filename, anno in sorted(annos.items(), key=lambda x: x[0]):
if "bbox" in anno:
anno_tree = instance2xml_base(anno, img_size)
outfile = os.path.join(vbb_outdir, os.path.splitext(filename)[0]+".xml")
print "Generating annotation xml file of picture: ", filename
etree.ElementTree(anno_tree).write(outfile, pretty_print=True)
def visualize_bbox(xml_file, img_file):
import cv2
tree = etree.parse(xml_file)
# load image
image = cv2.imread(img_file)
# get bbox
for bbox in tree.xpath('//bndbox'):
coord = []
for corner in bbox.getchildren():
coord.append(int(float(corner.text)))
# draw rectangle
# coord = [int(x) for x in coord]
image = cv2.rectangle(image, (coord[0], coord[1]), (coord[2], coord[3]), (0, 0, 255), 2)
# visualize image
cv2.imshow("test", image)
cv2.waitKey(0)
def main():
seq_inputdir = "/startdt_data/caltech_pedestrian_dataset"
vbb_inputdir = "/startdt_data/caltech_pedestrian_dataset/annotations"
seq_outputdir = "/startdt_data/caltech_pedestrian_dataset"
vbb_outputdir = "/startdt_data/caltech_pedestrian_dataset"
parse_anno_file(vbb_inputdir, seq_inputdir, vbb_outputdir, seq_outputdir)
xml_file = "/startdt_data/caltech_pedestrian_dataset/annotations/set00/bbox/set00_V013_1512.xml"
img_file = "/startdt_data/caltech_pedestrian_dataset/set00/frame/set00_V013_1512.jpg"
visualize_bbox(xml_file, img_file)
if __name__ == "__main__":
main()