-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathlstm_vae.py
190 lines (149 loc) · 5.61 KB
/
lstm_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
import tensorflow_probability as tfp
from keras.layers import Input, Dense, Lambda, Layer
from keras.layers import LSTM, RepeatVector
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras import optimizers
import math
import json
from scipy.stats import norm
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import StandardScaler
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
from keras.callbacks import LearningRateScheduler
from keras.callbacks import EarlyStopping
import matplotlib.pyplot as plt
tf.keras.utils.set_random_seed(42)
SAVE_PATH = "/content/drive/MyDrive/Colab Notebooks/data/"
DATA_PATH = "/content/drive/MyDrive/data/"
def scheduler(epoch, lr):
if epoch < 4:
return lr
else:
return lr * tf.math.exp(-0.1)
nab_path = DATA_PATH + 'NAB/'
nab_data_path = nab_path
labels_filename = '/labels/combined_labels.json'
train_file_name = 'artificialNoAnomaly/art_daily_no_noise.csv'
test_file_name = 'artificialWithAnomaly/art_daily_jumpsup.csv'
#train_file_name = 'realAWSCloudwatch/rds_cpu_utilization_cc0c53.csv'
#test_file_name = 'realAWSCloudwatch/rds_cpu_utilization_e47b3b.csv'
labels_file = open(nab_path + labels_filename, 'r')
labels = json.loads(labels_file.read())
labels_file.close()
def load_data_frame_with_labels(file_name):
data_frame = pd.read_csv(nab_data_path + file_name)
data_frame['anomaly_label'] = data_frame['timestamp'].isin(
labels[file_name]).astype(int)
return data_frame
train_data_frame = load_data_frame_with_labels(train_file_name)
test_data_frame = load_data_frame_with_labels(test_file_name)
plt.plot(train_data_frame.loc[0:3000,'value'])
plt.plot(test_data_frame['value'])
train_data_frame_final = train_data_frame.loc[0:3000,:]
test_data_frame_final = test_data_frame
data_scaler = StandardScaler()
data_scaler.fit(train_data_frame_final[['value']].values)
train_data = data_scaler.transform(train_data_frame_final[['value']].values)
test_data = data_scaler.transform(test_data_frame_final[['value']].values)
def create_dataset(dataset, look_back=64):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
dataX.append(dataset[i:(i+look_back),:])
dataY.append(dataset[i+look_back,:])
return np.array(dataX), np.array(dataY)
X_data, y_data = create_dataset(train_data, look_back=64) #look_back = window_size
X_train, X_val, y_train, y_val = train_test_split(X_data, y_data, test_size=0.1, random_state=42)
X_test, y_test = create_dataset(test_data, look_back=64) #look_back = window_size
#training params
batch_size = 256
num_epochs = 32
#model params
timesteps = X_train.shape[1]
input_dim = X_train.shape[-1]
intermediate_dim = 16
latent_dim = 2
epsilon_std = 1.0
#sampling layer
class Sampling(Layer):
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
#likelihood layer
class Likelihood(Layer):
def call(self, inputs):
x, x_decoded_mean, x_decoded_scale = inputs
dist = tfp.distributions.MultivariateNormalDiag(x_decoded_mean, x_decoded_scale)
likelihood = dist.log_prob(x)
return likelihood
#VAE architecture
#encoder
x = Input(shape=(timesteps, input_dim,))
h = LSTM(intermediate_dim)(x)
z_mean = Dense(latent_dim)(h)
z_log_sigma = Dense(latent_dim, activation='softplus')(h)
#sampling
z = Sampling()((z_mean, z_log_sigma))
#decoder
decoder_h = LSTM(intermediate_dim, return_sequences=True)
decoder_loc = LSTM(input_dim, return_sequences=True)
decoder_scale = LSTM(input_dim, activation='softplus', return_sequences=True)
h_decoded = RepeatVector(timesteps)(z)
h_decoded = decoder_h(h_decoded)
x_decoded_mean = decoder_loc(h_decoded)
x_decoded_scale = decoder_scale(h_decoded)
#log-likelihood
llh = Likelihood()([x, x_decoded_mean, x_decoded_scale])
#define VAE model
vae = Model(inputs=x, outputs=llh)
# Add KL divergence regularization loss and likelihood loss
kl_loss = - 0.5 * K.mean(1 + z_log_sigma - K.square(z_mean) - K.exp(z_log_sigma))
tot_loss = -K.mean(llh - kl_loss)
vae.add_loss(tot_loss)
# Loss and optimizer.
loss_fn = tf.keras.losses.MeanSquaredError()
optimizer = tf.keras.optimizers.Adam()
@tf.function
def training_step(x):
with tf.GradientTape() as tape:
reconstructed = vae(x) # Compute input reconstruction.
# Compute loss.
loss = 0 #loss_fn(x, reconstructed)
loss += sum(vae.losses)
# Update the weights of the VAE.
grads = tape.gradient(loss, vae.trainable_weights)
optimizer.apply_gradients(zip(grads, vae.trainable_weights))
return loss
losses = [] # Keep track of the losses over time.
dataset = tf.data.Dataset.from_tensor_slices(X_train).batch(batch_size)
for epoch in range(num_epochs):
for step, x in enumerate(dataset):
loss = training_step(x)
losses.append(float(loss))
print("Epoch:", epoch, "Loss:", sum(losses) / len(losses))
plt.figure()
plt.plot(losses, c='b', lw=2.0, label='train')
plt.title('LSTM-VAE model')
plt.xlabel('Epochs')
plt.ylabel('Total Loss')
plt.legend(loc='upper right')
plt.show()
#plt.savefig('./figures/lstm_loss.png')
pred_test = vae.predict(X_test)
plt.plot(pred_test[:,0])
is_anomaly = pred_test[:,0] < -1e1
plt.figure()
plt.plot(test_data, color='b')
plt.figure()
plt.plot(is_anomaly, color='r')