-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathimage_search.py
98 lines (78 loc) · 3.19 KB
/
image_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from keras import Model
from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
from keras.callbacks import LearningRateScheduler
from keras.callbacks import EarlyStopping
import os
import random
from PIL import Image
from scipy.spatial import distance
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
tf.keras.utils.set_random_seed(42)
SAVE_PATH = "/content/drive/MyDrive/Colab Notebooks/data/"
DATA_PATH = "/content/drive/MyDrive/data/101_ObjectCategories/"
def get_closest_images(acts, query_image_idx, num_results=5):
num_images, dim = acts.shape
distances = []
for image_idx in range(num_images):
distances.append(distance.euclidean(acts[query_image_idx, :], acts[image_idx, :]))
#end for
idx_closest = sorted(range(len(distances)), key=lambda k: distances[k])[1:num_results+1]
return idx_closest
def get_concatenated_images(images, indexes, thumb_height):
thumbs = []
for idx in indexes:
img = Image.open(images[idx])
img = img.resize((int(img.width * thumb_height / img.height), int(thumb_height)), Image.ANTIALIAS)
if img.mode != "RGB":
img = img.convert("RGB")
thumbs.append(img)
concat_image = np.concatenate([np.asarray(t) for t in thumbs], axis=1)
return concat_image
if __name__ == "__main__":
num_images = 5000
images = [os.path.join(dp,f) for dp, dn, filenames in os.walk(DATA_PATH) for f in filenames \
if os.path.splitext(f)[1].lower() in ['.jpg','.png','.jpeg']]
images = [images[i] for i in sorted(random.sample(range(len(images)), num_images))]
#CNN encodings
base_model = ResNet50(weights='imagenet')
model = Model(inputs=base_model.input, outputs=base_model.get_layer('avg_pool').output)
activations = []
for idx, image_path in enumerate(images):
if idx % 100 == 0:
print('getting activations for %d/%d image...' %(idx,len(images)))
img = image.load_img(image_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
features = model.predict(x)
activations.append(features.flatten().reshape(1,-1))
# reduce activation dimension
print('computing PCA...')
acts = np.concatenate(activations, axis=0)
pca = PCA(n_components=300)
pca.fit(acts)
acts = pca.transform(acts)
print('image search...')
query_image_idx = int(num_images*random.random())
idx_closest = get_closest_images(acts, query_image_idx)
query_image = get_concatenated_images(images, [query_image_idx], 300)
results_image = get_concatenated_images(images, idx_closest, 300)
plt.figure()
plt.imshow(query_image)
plt.title("query image (%d)" %query_image_idx)
plt.show()
#plt.savefig('./figures/query_image.png')
plt.figure()
plt.imshow(results_image)
plt.title("result images")
plt.show()
#plt.savefig('./figures/result_images.png')