-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathridge_reg.py
67 lines (53 loc) · 1.83 KB
/
ridge_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
class ridge_reg():
def __init__(self, n_iter=20, learning_rate=1e-3, lmbda=0.1):
self.n_iter = n_iter
self.learning_rate = learning_rate
self.lmbda = lmbda
def fit(self, X, y):
#insert const 1 for bias term
X = np.insert(X, 0, 1, axis=1)
self.loss = []
self.w = np.random.rand(X.shape[1])
for i in range(self.n_iter):
y_pred = X.dot(self.w)
mse = np.mean(0.5*(y - y_pred)**2 + 0.5*self.lmbda*self.w.T.dot(self.w))
self.loss.append(mse)
print(" %d iter, mse: %.4f" %(i, mse))
#compute gradient of NLL(w) wrt w
grad_w = - (y - y_pred).dot(X) + self.lmbda*self.w
#update the weights
self.w -= self.learning_rate * grad_w
def predict(self, X):
#insert const 1 for bias term
X = np.insert(X, 0, 1, axis=1)
y_pred = X.dot(self.w)
return y_pred
if __name__ == "__main__":
X, y = fetch_california_housing(return_X_y=True)
X_reg = X[:,2].reshape(-1,1) #avg number of rooms
X_std = (X_reg - X_reg.mean())/X.std() #standard scaling
y_std = (y - y.mean())/y.std() #standard scaling
X_std = X_std[:200,:]
y_std = y_std[:200]
rr = ridge_reg()
rr.fit(X_std, y_std)
y_pred = rr.predict(X_std)
print(rr.w)
plt.figure()
plt.plot(rr.loss)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.tight_layout()
plt.show()
plt.figure()
plt.scatter(X_std, y_std)
plt.plot(np.linspace(-1,1), rr.w[1]*np.linspace(-1,1)+rr.w[0], c='red')
plt.xlim([-0.01,0.01])
plt.xlabel("scaled avg num of rooms")
plt.ylabel("scaled house price")
plt.show()