-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathknn_reg.py
60 lines (42 loc) · 1.61 KB
/
knn_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
np.random.seed(42)
class KNN():
def __init__(self, K):
self.K = K
def euclidean_distance(self, x1, x2):
dist = 0
for i in range(len(x1)):
dist += np.power((x1[i] - x2[i]), 2)
return np.sqrt(dist)
def knn_search(self, X_train, y_train, Q):
y_pred = np.empty(Q.shape[0])
for i, query in enumerate(Q):
#get K nearest neighbors to query point
idx = np.argsort([self.euclidean_distance(query, x) for x in X_train])[:self.K]
#extract the labels of KNN training labels
knn_labels = np.array([y_train[i] for i in idx])
#label query sample as the average of knn_labels
y_pred[i] = np.mean(knn_labels)
return y_pred
if __name__ == "__main__":
plt.close('all')
#iris dataset
iris = datasets.load_iris()
X = iris.data[:,:2]
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
K = 4
knn = KNN(K)
y_pred = knn.knn_search(X_train, y_train, X_test)
plt.figure(1)
plt.scatter(X_train[:,0], X_train[:,1], s = 100, marker = 'x', color = 'r', label = 'data')
plt.scatter(X_test[:,0], X_test[:,1], s = 100, marker = 'o', color = 'b', label = 'query')
plt.title('K Nearest Neighbors (K=%d)'% K)
plt.legend()
plt.xlabel('X1')
plt.ylabel('X2')
plt.grid(True)
plt.show()