-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathnaive_bayes.py
101 lines (82 loc) · 3.39 KB
/
naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from time import time
from nltk.corpus import stopwords
from nltk.tokenize import RegexpTokenizer
from sklearn.metrics import accuracy_score
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
sns.set_style("whitegrid")
tokenizer = RegexpTokenizer(r'\w+')
stop_words = set(stopwords.words('english'))
stop_words.update(['s','t','m','1','2'])
class naive_bayes:
def __init__(self, K, D):
self.K = K #number of classes
self.D = D #dictionary size
self.pi = np.ones(K) #class priors
self.theta = np.ones((self.D, self.K)) #bernoulli parameters
def fit(self, X_train, y_train):
num_docs = X_train.shape[0]
for doc in range(num_docs):
label = y_train[doc]
self.pi[label] += 1
for word in range(self.D):
if (X_train[doc][word] > 0):
self.theta[word][label] += 1
#end if
#end for
#end for
#normalize pi and theta
self.pi = self.pi/np.sum(self.pi)
self.theta = self.theta/np.sum(self.theta, axis=0)
def predict(self, X_test):
num_docs = X_test.shape[0]
logp = np.zeros((num_docs,self.K))
for doc in range(num_docs):
for kk in range(self.K):
logp[doc][kk] = np.log(self.pi[kk])
for word in range(self.D):
if (X_test[doc][word] > 0):
logp[doc][kk] += np.log(self.theta[word][kk])
else:
logp[doc][kk] += np.log(1-self.theta[word][kk])
#end if
#end for
#end for
#end for
return np.argmax(logp, axis=1)
if __name__ == "__main__":
import nltk
nltk.download('stopwords')
#load data
print("loading 20 newsgroups dataset...")
tic = time()
classes = ['sci.space', 'comp.graphics', 'rec.autos', 'rec.sport.hockey']
dataset = fetch_20newsgroups(shuffle=True, random_state=0, remove=('headers','footers','quotes'), categories=classes)
X_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.target, test_size=0.5, random_state=0)
toc = time()
print("elapsed time: %.4f sec" %(toc - tic))
print("number of training docs: ", len(X_train))
print("number of test docs: ", len(X_test))
print("vectorizing input data...")
cnt_vec = CountVectorizer(tokenizer=tokenizer.tokenize, analyzer='word', ngram_range=(1,1), max_df=0.8, min_df=2, max_features=1000, stop_words=stop_words)
cnt_vec.fit(X_train)
toc = time()
print("elapsed time: %.2f sec" %(toc - tic))
vocab = cnt_vec.vocabulary_
idx2word = {val: key for (key, val) in vocab.items()}
print("vocab size: ", len(vocab))
X_train_vec = cnt_vec.transform(X_train).toarray()
X_test_vec = cnt_vec.transform(X_test).toarray()
print("naive bayes model MLE inference...")
K = len(set(y_train)) #number of classes
D = len(vocab) #dictionary size
nb_clf = naive_bayes(K, D)
nb_clf.fit(X_train_vec, y_train)
print("naive bayes prediction...")
y_pred = nb_clf.predict(X_test_vec)
nb_clf_acc = accuracy_score(y_test, y_pred)
print("test set accuracy: ", nb_clf_acc)