-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathgibbs_gauss.py
76 lines (59 loc) · 2.72 KB
/
gibbs_gauss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import matplotlib.pyplot as plt
import itertools
from numpy.linalg import inv
from scipy.stats import multivariate_normal
np.random.seed(42)
class gibbs_gauss:
def gauss_conditional(self, mu, Sigma, setA, x):
#computes P(X_A | X_B = x) = N(mu_{A|B}, Sigma_{A|B})
dim = len(mu)
setU = set(range(dim))
setB = setU.difference(setA)
muA = np.array([mu[item] for item in setA]).reshape(-1,1)
muB = np.array([mu[item] for item in setB]).reshape(-1,1)
xB = np.array([x[item] for item in setB]).reshape(-1,1)
Sigma_AA = []
for (idx1, idx2) in itertools.product(setA, setA):
Sigma_AA.append(Sigma[idx1][idx2])
Sigma_AA = np.array(Sigma_AA).reshape(len(setA),len(setA))
Sigma_AB = []
for (idx1, idx2) in itertools.product(setA, setB):
Sigma_AB.append(Sigma[idx1][idx2])
Sigma_AB = np.array(Sigma_AB).reshape(len(setA),len(setB))
Sigma_BB = []
for (idx1, idx2) in itertools.product(setB, setB):
Sigma_BB.append(Sigma[idx1][idx2])
Sigma_BB = np.array(Sigma_BB).reshape(len(setB),len(setB))
Sigma_BB_inv = inv(Sigma_BB)
mu_AgivenB = muA + np.matmul(np.matmul(Sigma_AB, Sigma_BB_inv), xB - muB)
Sigma_AgivenB = Sigma_AA - np.matmul(np.matmul(Sigma_AB, Sigma_BB_inv), np.transpose(Sigma_AB))
return mu_AgivenB, Sigma_AgivenB
def sample(self, mu, Sigma, xinit, num_samples):
dim = len(mu)
samples = np.zeros((num_samples, dim))
x = xinit
for s in range(num_samples):
for d in range(dim):
mu_AgivenB, Sigma_AgivenB = self.gauss_conditional(mu, Sigma, set([d]), x)
x[d] = np.random.normal(mu_AgivenB, np.sqrt(Sigma_AgivenB))
#end for
samples[s,:] = np.transpose(x)
#end for
return samples
if __name__ == "__main__":
num_samples = 2000
mu = [1, 1]
Sigma = [[2,1], [1,1]]
xinit = np.random.rand(len(mu),1)
num_burnin = 1000
gg = gibbs_gauss()
gibbs_samples = gg.sample(mu, Sigma, xinit, num_samples)
scipy_samples = multivariate_normal.rvs(mean=mu, cov=Sigma, size=num_samples, random_state=42)
plt.figure()
plt.scatter(gibbs_samples[num_burnin:,0], gibbs_samples[num_burnin:,1], c = 'blue', marker='s', alpha=0.8, label='Gibbs Samples')
plt.scatter(scipy_samples[num_burnin:,0], scipy_samples[num_burnin:,1], c = 'red', alpha=0.8, label='Ground Truth Samples')
plt.grid(True); plt.legend(); plt.xlim([-4,5])
plt.title("Gibbs Sampling of Multivariate Gaussian"); plt.xlabel("X1"); plt.ylabel("X2")
#plt.savefig("./figures/gibbs_gauss.png")
plt.show()