-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-interior.tex
121 lines (101 loc) · 4.57 KB
/
chap-interior.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
\chapter{Interior funcoids}
Having a funcoid $f$ let define \emph{interior funcoid} $f^{\circ}$.
\begin{defn}
Let $f \in \mathsf{\mathsf{FCD}} (A , B) = \mathsf{\mathsf{pFCD}} \left(
\mathscr{T} A , \mathscr{T} B \right)$ be a co-complete funcoid. Then
$f^{\circ} \in \mathsf{\mathsf{pFCD}} \left( \dual \mathscr{T} A ,
\dual \mathscr{T} B \right)$ is defined by the formula $\langle
f^{\circ} \rangle^{\ast} X = \overline{\supfun{f}
\overline{X}}$.
\end{defn}
\begin{prop}
Pointfree funcoid $f^{\circ}$ exists and is unique.
\end{prop}
\begin{proof}
$X \mapsto \overline{\supfun{f} \overline{X}}$ is a component
of pointfree funcoid $\dual \mathscr{T} A \rightarrow \dual
\mathscr{T} B$ iff $\supfun{f}$ is a component of the
corresponding pointfree funcoid $\mathscr{T} A \rightarrow \mathscr{T} B$
that is essentially component of the corresponding funcoid
$\mathsf{\mathsf{FCD}} (A , B)$ what holds for a unique funcoid.
\end{proof}
It can be also defined for arbitrary funcoids by the formula $f^{\circ} =
(\CoCompl f)^{\circ}$.
\begin{obvious}
$f^{\circ}$ is co-complete.
\end{obvious}
\begin{thm}
The following values are pairwise equal for a co-complete funcoid $f$ and $X
\in \mathscr{T} \Src f$:
\begin{enumerate}
\item\label{int-simpl} $\rsupfun{f^{\circ}} X$;
\item\label{int-set} $\setcond{ y \in \Dst f }{ \rsupfun{ f^{-
1} } \{ y \} \sqsubseteq X }$
\item\label{int-sset-set} $\bigsqcup \setcond{ Y \in \mathscr{T} \Dst f }{
\rsupfun{f^{- 1}} Y \sqsubseteq X }$
\item\label{int-sset-flt} $\bigsqcup \setcond{ \mathcal{Y} \in \mathscr{F} \Dst f
}{ \supfun{f^{- 1}} \mathcal{Y}
\sqsubseteq X }$
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item[\ref{int-simpl}=\ref{int-set}] $\setcond{ y \in \Dst f }{
\rsupfun{f^{- 1}} \{ y \} \sqsubseteq X } = \setcond{ x \in
\Dst f }{ \rsupfun{f^{- 1}} \{
x \} \asymp \overline{X} } = \setcond{ x \in \Dst f
}{ \{ x \} \asymp \supfun{f}
\overline{X} } = \overline{\supfun{f} \overline{X}} =
\rsupfun{f^{\circ}} X$.
\item[\ref{int-set}=\ref{int-sset-set}] If $\rsupfun{f^{- 1}} Y \sqsubseteq X$ then (by
completeness of $f^{- 1}$) $Y = \setcond{ y \in Y }{
\rsupfun{f^{- 1}} \{ y \} \sqsubseteq X }$ and thus
\[ \bigsqcup \setcond{ Y \in \mathscr{T} \Dst f }
{ \rsupfun{f^{- 1}} Y \sqsubseteq X }
\sqsubseteq \setcond{ y \in \Dst f }{
\rsupfun{f^{- 1}} \{ y \} \sqsubseteq X } . \]
The reverse inequality is obvious.
\item[\ref{int-sset-set}=\ref{int-sset-flt}] It's enough to prove that if $\supfun{f^{- 1}}
\mathcal{Y} \sqsubseteq X$ for $\mathcal{Y} \in \mathscr{F} \Dst f$
then exists $Y \in \up \mathcal{Y}$ such that $\langle f^{- 1}
\rangle^{\ast} Y \sqsubseteq X$. Really let $\supfun{f^{- 1}}
\mathcal{Y} \sqsubseteq X$. Then $\bigsqcap \langle \langle f^{- 1}
\rangle^{\ast} \rangle^{\ast} \up \mathcal{Y} \sqsubseteq X$ and
thus exists $Y \in \up \mathcal{Y}$ such that $\langle f^{- 1}
\rangle^{\ast} Y \sqsubseteq X$ by properties of generalized filter bases.
\end{description}
\end{proof}
This coincides with the customary definition of interior in topological
spaces.
\begin{prop}
$f^{\circ \circ} = f$ for every funcoid $f$.
\end{prop}
\begin{proof}
$\rsupfun{f^{\circ\circ}} X = \neg \neg \supfun{f}
\neg \neg X = \supfun{f} X$.
\end{proof}
\begin{prop}\label{get-rid-interior}
Let $g \in \mathsf{FCD} (A , B)$, $f \in \mathsf{FCD} (B ,
C)$, $h \in \mathsf{FCD} (A , C)$ for some sets $A$. $B$, $C$.
$g \sqsubseteq f^{\circ} \circ h \Leftrightarrow f^{- 1} \circ g \sqsubseteq
h$, provided $f$ and $h$ are co-complete.
\end{prop}
\begin{proof}
$g \sqsubseteq f^{\circ} \circ h \Leftrightarrow \forall X \in A : \rsupfun{ g
} X \sqsubseteq \rsupfun{ f^{\circ} \circ h } X
\Leftrightarrow \forall X \in A : \rsupfun{ g } X \sqsubseteq
\rsupfun{ f^{\circ} } \rsupfun{ h } X \Leftrightarrow
\forall X \in A : \rsupfun{ g } X \sqsubseteq \neg \rsupfun{ f
} \neg \rsupfun{ h } X \Leftrightarrow
\forall X \in A : \rsupfun{ g } X \asymp \rsupfun{ f } \neg \rsupfun{h} X \Leftrightarrow \forall X \in A : \rsupfun{ f^{- 1}
} \rsupfun{ g } X \asymp \neg \rsupfun{ h
} X \Leftrightarrow \forall X \in A : \rsupfun{ f^{- 1}
} \rsupfun{ g } X \sqsubseteq \rsupfun{ h
} X \Leftrightarrow \forall X \in A : \rsupfun{ f^{- 1} \circ g
} X \sqsubseteq \rsupfun{ h } X \Leftrightarrow f^{-
1} \circ g \sqsubseteq h$.
\end{proof}
\begin{rem}
The above theorem allows to get rid of interior funcoids (and use only ``regular'' funcoids) in some formulas.
\end{rem}