-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-funcoids.tex
3308 lines (2979 loc) · 117 KB
/
chap-funcoids.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Funcoids}
In this chapter (and several following chapters) the word \emph{filter}
will refer to a filter (or equivalently any filter object) on a set
(rather than a filter on an arbitrary poset).
\section{\index{funcoid}Informal introduction into funcoids}
Funcoids are a generalization of proximity spaces and a generalization
of pretopological spaces. Also funcoids are a generalization of binary
relations.
That funcoids are a common generalization of ``spaces'' (proximity
spaces, (pre)topological spaces) and binary relations (including monovalued
functions) makes them smart for describing properties of functions
in regard of spaces. For example the statement ``$f$ is a continuous
function from a space $\mu$ to a space $\nu$'' can be described
in terms of funcoids as the formula $f\circ\mu\sqsubseteq\nu\circ f$
(see below for details).
Most naturally funcoids appear as a generalization of proximity spaces.\footnote{In fact I discovered funcoids pondering on topological spaces, not on proximity spaces, but this is only of a historic interest.}
Let $\delta$ be a proximity. We will extend the relation~$\delta$
from sets to filters by the formula:
\[
\mathcal{A}\mathrel\delta'\mathcal{B}\Leftrightarrow\forall
A\in\up\mathcal{A},B\in\up\mathcal{B}:A\mathrel\delta B.
\]
Then (as it will be proved below) there exist two functions
$\alpha,\beta\in\mathscr{F}^{\mathscr{F}}$
such that
\[
\mathcal{A}\mathrel\delta'\mathcal{B}\Leftrightarrow\mathcal{B}
\sqcap\alpha\mathcal{A}\ne\bot^{\mathscr{F}}\Leftrightarrow\mathcal{A}
\sqcap\beta\mathcal{B}\ne\bot^{\mathscr{F}}.
\]
The pair $(\alpha,\beta)$ is called \emph{funcoid} when
$\mathcal{B}\sqcap\alpha\mathcal{A}\ne\bot^{\mathscr{F}}\Leftrightarrow\mathcal{
A}\sqcap\beta\mathcal{B}\ne\bot^{\mathscr{F}}$.
So funcoids are a generalization of proximity spaces.
Funcoids consist of two components the first $\alpha$ and the second
$\beta$. The first component of a funcoid $f$ is denoted as $\supfun f$
and the second component is denoted as $\supfun{f^{-1}}$. (The similarity
of this notation with the notation for the image of a set under a
function is not a coincidence, we will see that in the case of principal
funcoids (see below) these coincide.)
One of the most important properties of a funcoid is that it is uniquely
determined by just one of its components. That is a funcoid $f$ is
uniquely determined by the function $\supfun f$. Moreover a funcoid
$f$ is uniquely determined by values of $\supfun f$ on principal
filters.
Next we will consider some examples of funcoids determined by specified
values of the first component on sets.
Funcoids as a generalization of pretopological spaces: Let $\alpha$
be a pretopological space that is a map \emph{$\alpha\in\mathscr{F}^{\mho}$}
for some set $\mho$. Then we define $\alpha'X=\bigsqcup_{x\in X}\alpha x$
for every set $X\in\subsets\mho$. We will prove that there exists
a unique funcoid $f$ such that $\alpha'=\supfun f|_{\mathfrak{P}}\circ\uparrow$
where $\mathfrak{P}$ is the set of principal filters on $\mho$.
So funcoids are a generalization of pretopological spaces. Funcoids
are also a generalization of preclosure operators: For every preclosure
operator $p$ on a set $\mho$ it exists a unique funcoid $f$ such
that $\supfun f|_{\mathfrak{P}}\circ\uparrow=\uparrow\circ p$.
For every binary relation $p$ on a set $\mho$ there exists unique
funcoid $f$ such that
\[
\forall X\in\subsets\mho:\supfun f\uparrow X=\uparrow\rsupfun pX
\]
(where $\rsupfun p$ is defined in the introduction), recall that
a funcoid is uniquely determined by the values of its first component
on sets. I will call such funcoids \emph{principal}. So funcoids are
a generalization of binary relations.
Composition of binary relations (i.e. of principal funcoids) complies
with the formulas:
\[
\rsupfun{g\circ f}=\rsupfun g\circ\rsupfun f\quad\text{and}\quad\rsupfun{(g\circ
f)^{-1}}=\rsupfun{f^{-1}}\circ\rsupfun{g^{-1}}.
\]
By similar formulas we can define composition of every two funcoids.
Funcoids with this composition form a category (\emph{the category
of funcoids}).
Also funcoids can be reversed (like reversal of $X$ and $Y$ in a
binary relation) by the formula $(\alpha,\beta)^{-1}=(\beta,\alpha)$.
In the particular case if $\mu$ is a proximity we have $\mu^{-1}=\mu$
because proximities are symmetric.
Funcoids behave similarly to (multivalued) functions but acting on
filters instead of acting on sets. Below there will be defined domain
and image of a funcoid (the domain and the image of a funcoid are
filters).
\section{Basic definitions}
\begin{defn}
\index{funcoid}Let us call a \emph{funcoid} from a set $A$ to a
set $B$ a quadruple $(A,B,\alpha,\beta)$ where
$\alpha\in\mathscr{F}(B)^{\mathscr{F}(A)}$,
$\alpha\in\mathscr{F}(A)^{\mathscr{F}(B)}$ such that
\[
\forall\mathcal{X}\in\mathscr{F}(A),\mathcal{Y}\in\mathscr{F}(B):(\mathcal{Y}
\nasymp\alpha\mathcal{X}\Leftrightarrow\mathcal{X}\nasymp\beta\mathcal{Y}).
\]
\end{defn}
\begin{defn}
\index{funcoid!source}\index{funcoid!destination}\emph{Source} and
\emph{destination} of every funcoid $(A,B,\alpha,\beta)$ are defined
as:
\[
\Src(A,B,\alpha,\beta)=A\quad\text{and}\quad\Dst(A,B,\alpha,\beta)=B.
\]
\end{defn}
I will denote $\mathsf{FCD}(A,B)$ the set of funcoids from $A$ to
$B$.
I will denote $\mathsf{FCD}$ the set of all funcoids (for small sets).
\begin{defn}
\index{endo-funcoid}I will call an \emph{endofuncoid} a funcoid whose source is the same as it's destination.
\end{defn}
\begin{defn}
$\supfun{(A,B,\alpha,\beta)}\eqdef\alpha$ for a funcoid $(A,B,\alpha,\beta)$.
\end{defn}
\begin{defn}
\index{funcoid!reverse}The \emph{reverse} funcoid
$(A,B,\alpha,\beta)^{-1}=(B,A,\beta,\alpha)$
for a funcoid $(A,B,\alpha,\beta)$.\end{defn}
\begin{note}
The reverse funcoid is \emph{not} an inverse in the sense of group
theory or category theory.\end{note}
\begin{prop}
If $f$ is a funcoid then $f^{-1}$ is also a funcoid.\end{prop}
\begin{proof}
It follows from symmetry in the definition of funcoid.\end{proof}
\begin{obvious}
$(f^{-1})^{-1}=f$ for a funcoid $f$.\end{obvious}
\begin{defn}
The relation $\mathord{\suprel f}\in\subsets(\mathscr{F}(\Src
f)\times\mathscr{F}(\Dst f))$
is defined (for every funcoid $f$ and $\mathcal{X}\in\mathscr{F}(\Src f)$,
$\mathcal{Y}\in\mathscr{F}(\Dst f)$ by the formula $\mathcal{X}\suprel
f\mathcal{Y}\Leftrightarrow\mathcal{Y}\nasymp\supfun f\mathcal{X}$.\end{defn}
\begin{obvious}
$\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\mathcal{Y}\nasymp\supfun
f\mathcal{X}\Leftrightarrow\mathcal{X}\nasymp\supfun{f^{-1}}\mathcal{Y}$
for every funcoid $f$ and $\mathcal{X}\in\mathscr{F}(\Src f)$,
$\mathcal{Y}\in\mathscr{F}(\Dst f)$.
\end{obvious}
\begin{obvious}
$\suprel{f^{-1}}=\suprel f^{-1}$ for a funcoid $f$.\end{obvious}
\begin{thm}
Let $A$, $B$ be sets.
\begin{enumerate}
\item For given value of $\supfun f\in\mathscr{F}(B)^{\mathscr{F}(A)}$
there exists no more than one funcoid $f\in\mathsf{FCD}(A,B)$.
\item For given value of $\mathord{\suprel
f}\in\subsets(\mathscr{F}(A)\times\mathscr{F}(B))$
there exists no more than one funcoid $f\in\mathsf{FCD}(A,B)$.
\end{enumerate}
\end{thm}
\begin{proof}
Let $f,g\in\mathsf{FCD}(A,B)$.
Obviously, $\supfun f=\supfun g\Rightarrow\suprel f=\suprel g$ and
$\supfun{f^{-1}}=\supfun{g^{-1}}\Rightarrow\suprel f=\suprel g$.
So it's enough to prove that $\suprel f=\suprel g\Rightarrow\supfun f=\supfun
g$.
Provided that $\suprel f=\suprel g$ we have \[\mathcal{Y}\nasymp\supfun
f\mathcal{X}\Leftrightarrow\mathcal{X}\suprel
f\mathcal{Y}\Leftrightarrow\mathcal{X}\suprel
g\mathcal{Y}\Leftrightarrow\mathcal{Y}\nasymp\supfun g\mathcal{X}\]
and consequently $\supfun f\mathcal{X}=\supfun g\mathcal{X}$ for
every $\mathcal{X}\in\mathscr{F}(A)$, $\mathcal{Y}\in\mathscr{F}(B)$
because a set of filters is separable, thus $\supfun f=\supfun g$.\end{proof}
\begin{prop}
$\supfun f\bot=\bot$
for every funcoid $f$.\end{prop}
\begin{proof}
$\mathcal{Y}\nasymp\supfun f\bot\Leftrightarrow\bot\nasymp\supfun{f^{-1}}\mathcal{Y}\Leftrightarrow0\Leftrightarrow\mathcal{Y}
\nasymp\bot$.
Thus $\supfun f\bot=\bot$
by separability of filters.\end{proof}
\begin{prop}
$\supfun f(\mathcal{I}\sqcup\mathcal{J})=\supfun f\mathcal{I}\sqcup\supfun
f\mathcal{J}$
for every funcoid $f$ and $\mathcal{I},\mathcal{J}\in\mathscr{F}(\Src
f)$.\end{prop}
\begin{proof}
~
\begin{align*}
\fullstar\supfun f(\mathcal{I}\sqcup\mathcal{J}) & =\\
\setcond{\mathcal{Y}\in\mathscr{F}}{\mathcal{Y}\nasymp\supfun
f(\mathcal{I}\sqcup\mathcal{J})} & =\\
\setcond{\mathcal{Y}\in\mathscr{F}}{\mathcal{I}\sqcup\mathcal{J}\nasymp\supfun{
f^{-1}}\mathcal{Y}} & =\\
\setcond{\mathcal{Y}\in\mathscr{F}}{\mathcal{I}\nasymp\supfun{f^{-1}}\mathcal{Y}
\lor\mathcal{J}\nasymp\supfun{f^{-1}}\mathcal{Y}} & =\\
\setcond{\mathcal{Y}\in\mathscr{F}}{\mathcal{Y}\nasymp\supfun
f\mathcal{I}\lor\mathcal{Y}\nasymp\supfun f\mathcal{J}} & =\\
\setcond{\mathcal{Y}\in\mathscr{F}}{\mathcal{Y}\nasymp\supfun
f\mathcal{I}\sqcup\supfun f\mathcal{J}} & =\\
\fullstar(\supfun f\mathcal{I}\sqcup\supfun f\mathcal{J}).
\end{align*}
Thus $\supfun f(\mathcal{I}\sqcup\mathcal{J})=\supfun f\mathcal{I}\sqcup\supfun
f\mathcal{J}$
because $\mathscr{F}(\Dst f)$ is separable.\end{proof}
\begin{prop}
For every $f\in\mathsf{FCD}(A,B)$ for every sets $A$ and $B$ we
have:
\begin{enumerate}
\item \label{fcd-f-d1}$\mathcal{K}\suprel
f\mathcal{I}\sqcup\mathcal{J}\Leftrightarrow\mathcal{K}\suprel
f\mathcal{I}\lor\mathcal{K}\suprel f\mathcal{J}$
for every $\mathcal{I},\mathcal{J}\in\mathscr{F}(B)$,
$\mathcal{K}\in\mathscr{F}(A)$.
\item \label{fcd-f-d2}$\mathcal{I}\sqcup\mathcal{J}\suprel
f\mathcal{K}\Leftrightarrow\mathcal{I}\suprel f\mathcal{K}\lor\mathcal{J}\suprel
f\mathcal{K}$
for every $\mathcal{I},\mathcal{J}\in\mathscr{F}(A)$,
$\mathcal{K}\in\mathscr{F}(B)$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{disorder}
\item [{\ref{fcd-f-d1}}] ~
\begin{align*}
\mathcal{K}\suprel f\mathcal{I}\sqcup\mathcal{J} & \Leftrightarrow\\
(\mathcal{I}\sqcup\mathcal{J})\sqcap\supfun f\mathcal{K}\ne\bot^{\mathscr{F}(B)}
& \Leftrightarrow\\
\mathcal{I}\sqcap\supfun
f\mathcal{K}\ne\bot^{\mathscr{F}(B)}\lor\mathcal{J}\sqcap\supfun
f\mathcal{K}\ne\bot^{\mathscr{F}(B)} & \Leftrightarrow\\
\mathcal{K}\suprel f\mathcal{I}\lor\mathcal{K}\suprel f\mathcal{J}.
\end{align*}
\item [{\ref{fcd-f-d2}}] Similar.
\end{disorder}
\end{proof}
\subsection{Composition of funcoids}
\begin{defn}
\index{composable!funcoids}\index{funcoids!composable}Funcoids $f$
and $g$ are \emph{composable} when $\Dst f=\Src g$.
\end{defn}
\begin{defn}
\index{composition!funcoids}\index{funcoids!composition}\emph{Composition}
of composable funcoids is defined by the formula
\[
(B,C,\alpha_{2},\beta_{2})\circ(A,B,\alpha_{1},\beta_{1})=(A,C,\alpha_{2}
\circ\alpha_{1},\beta_{1}\circ\beta_{2}).
\]
\end{defn}
\begin{prop}
If $f$, $g$ are composable funcoids then $g\circ f$ is a funcoid.\end{prop}
\begin{proof}
Let $f=(A,B,\alpha_{1},\beta_{1})$, $g=(B,C,\alpha_{2},\beta_{2})$.
For every $\mathcal{X}\in\mathscr{F}(A)$, $\mathcal{Y}\in\mathscr{F}(C)$
we have
\[
\mathcal{Y}\nasymp(\alpha_{2}\circ\alpha_{1})\mathcal{X}\Leftrightarrow\mathcal{
Y}\nasymp\alpha_{2}\alpha_{1}\mathcal{X}\Leftrightarrow\alpha_{1}\mathcal{X}
\nasymp\beta_{2}\mathcal{Y}\Leftrightarrow\mathcal{X}\nasymp\beta_{1}\beta_{2}
\mathcal{Y}\Leftrightarrow\mathcal{X}\nasymp(\beta_{1}\circ\beta_{2})\mathcal{Y}
.
\]
So $(A,C,\alpha_{2}\circ\alpha_{1},\beta_{1}\circ\beta_{2})$ is a
funcoid.\end{proof}
\begin{obvious}
$\supfun{g\circ f}=\supfun g\circ\supfun f$ for every composable
funcoids $f$ and $g$.\end{obvious}
\begin{prop}
$(h\circ g)\circ f=h\circ(g\circ f)$ for every composable funcoids
$f$, $g$, $h$.\end{prop}
\begin{proof}
~
\begin{align*}
\supfun{(h\circ g)\circ f} & =\\
\supfun{h\circ g}\circ\supfun f & =\\
(\supfun h\circ\supfun g)\circ\supfun f & =\\
\supfun h\circ(\supfun g\circ\supfun f) & =\\
\supfun h\circ\supfun{g\circ f} & =\\
\supfun{h\circ(g\circ f)}.
\end{align*}
\end{proof}
\begin{thm}
$(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ for every composable funcoids
$f$ and $g$.\end{thm}
\begin{proof}
$\supfun{(g\circ
f)^{-1}}=\supfun{f^{-1}}\circ\supfun{g^{-1}}=\supfun{f^{-1}\circ g^{-1}}$.
\end{proof}
\section{Funcoid as continuation}
Let $f$ be a funcoid.
\begin{defn}
$\rsupfun f$ is the function $\mathscr{T}(\Src f)\rightarrow\mathscr{F}(\Dst f)$
defined by the formula
\[
\rsupfun fX=\supfun f\uparrow X.
\]
\end{defn}
\begin{defn}
$\rsuprel f$ is the relation between $\mathscr{T}(\Src f)$ and $\mathscr{T}(\Dst
f)$
defined by the formula
\[
X\rsuprel fY\Leftrightarrow\uparrow X\suprel f\uparrow Y.
\]
\end{defn}
\begin{obvious}
~
\begin{enumerate}
\item $\rsupfun f=\supfun f\circ\uparrow$;
\item $\mathord{\rsuprel f}=\uparrow^{-1}\circ\mathord{\suprel f}\circ\uparrow$.
\end{enumerate}
\end{obvious}
\begin{obvious}
$\supfun g\rsupfun fX=\rsupfun{g\circ f}X$ for every $X\in\mathscr{T}(\Src
f)$.\end{obvious}
\begin{thm}
For every funcoid $f$ and $\mathcal{X}\in\mathscr{F}(\Src f)$,
$\mathcal{Y}\in\mathscr{F}(\Dst f)$
\begin{enumerate}
\item \label{f-filt-x}$\supfun f\mathcal{X}=\bigsqcap\rsupfun{\rsupfun
f}\up\mathcal{X}$;
\item \label{frel-filt}$\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\forall
X\in\up\mathcal{X},Y\in\up\mathcal{Y}:X\rsuprel fY$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{frel-filt}}] ~
\begin{align*}
\mathcal{X}\suprel f\mathcal{Y} & \Leftrightarrow\\
\mathcal{Y}\sqcap\supfun f\mathcal{X}\ne\bot &
\Leftrightarrow\\
\forall Y\in\up\mathcal{Y}:\uparrow Y\sqcap\supfun
f\mathcal{X}\ne\bot & \Leftrightarrow\\
\forall Y\in\up\mathcal{Y}:\mathcal{X}\suprel f\uparrow Y.
\end{align*}
Analogously $\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\forall
X\in\up\mathcal{X}:\uparrow X\suprel f\mathcal{Y}$.
Combining these two equivalences we get
\[
\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\forall
X\in\up\mathcal{X},Y\in\up\mathcal{Y}:\uparrow X\suprel f\uparrow
Y\Leftrightarrow\forall X\in\up\mathcal{X},Y\in\up\mathcal{Y}:X\rsuprel fY.
\]
\item [{\ref{f-filt-x}}] ~
\begin{align*}
\mathcal{Y}\sqcap\supfun f\mathcal{X}\ne\bot &
\Leftrightarrow\\
\mathcal{X}\suprel f\mathcal{Y} & \Leftrightarrow\\
\forall X\in\up\mathcal{X}:\uparrow X\suprel f\mathcal{Y} & \Leftrightarrow\\
\forall X\in\up\mathcal{X}:\mathcal{Y}\sqcap\rsupfun fX\ne\bot.
\end{align*}
Let's denote $W=\setcond{\mathcal{Y}\sqcap\rsupfun fX}{X\in\up\mathcal{X}}$.
We will prove that $W$ is a generalized filter base. To prove this
it is enough to show that $V=\setcond{\rsupfun fX}{X\in\up\mathcal{X}}$
is a generalized filter base.
Let $\mathcal{P},\mathcal{Q}\in V$. Then $\mathcal{P}=\rsupfun fA$,
$\mathcal{Q}=\rsupfun fB$ where $A,B\in\up\mathcal{X}$; $A\sqcap
B\in\up\mathcal{X}$
and $\mathcal{R}\sqsubseteq\mathcal{P}\sqcap\mathcal{Q}$ for
$\mathcal{R}=\rsupfun f(A\sqcap B)\in V$.
So $V$ is a generalized filter base and thus $W$ is a generalized
filter base.
$\bot\notin W\Leftrightarrow\bigsqcap
W\ne\bot$
by properties of generalized filter bases. That is
\[
\forall X\in\up\mathcal{X}:\mathcal{Y}\sqcap\rsupfun
fX\neq\bot^{\mathscr{F}(\Dst
f)}\Leftrightarrow\mathcal{Y}\sqcap\bigsqcap\rsupfun{\rsupfun
f}\up\mathcal{X}\ne\bot.
\]
Comparing with the above, $\mathcal{Y}\sqcap\supfun
f\mathcal{X}\ne\bot^{\mathscr{F}(\Dst
f)}\Leftrightarrow\mathcal{Y}\sqcap\bigsqcap\rsupfun{\rsupfun
f}\up\mathcal{X}\ne\bot$.
So $\supfun f\mathcal{X}=\bigsqcap\rsupfun{\rsupfun f}\up\mathcal{X}$
because the lattice of filters is separable.
\end{widedisorder}
\end{proof}
\begin{cor}
Let $f$ be a funcoid.
\begin{enumerate}
\item The value of $f$ can be restored from the value of $\rsupfun f$.
\item The value of $f$ can be restored from the value of $\rsuprel f$.
\end{enumerate}
\end{cor}
\begin{prop}
For every $f\in\mathsf{FCD}(A,B)$ we have (for every $I,J\in\mathscr{T}A$)
\[
\rsupfun f\bot=\bot,\quad\rsupfun f(I\sqcup
J)=\rsupfun fI\sqcup\rsupfun fJ
\]
and
\begin{multline*}
\lnot(I \rsuprel f\bot), I\sqcup J\rsuprel fK
\Leftrightarrow I\rsuprel fK\lor J\rsuprel fK \\
\text{(for every \ensuremath{I,J\in\mathscr{T}A}, \ensuremath{K\in\mathscr{T}B})},
\end{multline*}
\begin{multline*}
\lnot(\bot \rsuprel fI), K\rsuprel fI\sqcup J
\Leftrightarrow K\rsuprel fI\lor K\rsuprel fJ \\
\text{(for every \ensuremath{I,J\in\mathscr{T}B}, \ensuremath{K\in\mathscr{T}A})}.
\end{multline*}
\end{prop}
\begin{proof}
$\rsupfun f\bot=\supfun f\bot=\supfun
f\bot=\bot$;
\[
\rsupfun f(I\sqcup J)=\supfun f\uparrow(I\sqcup J)=\supfun f\uparrow
I\sqcup\supfun f\uparrow J=\rsupfun fI\sqcup\rsupfun fJ.
\]
$I\rsuprel
f\bot\Leftrightarrow\bot\nasymp\supfun
f\uparrow I\Leftrightarrow0$;
\begin{align*}
I\sqcup J\rsuprel fK & \Leftrightarrow\\
\uparrow(I\sqcup J)\suprel f\uparrow K & \Leftrightarrow\\
\uparrow K\nasymp\supfun f\uparrow(I\sqcup J) & \Leftrightarrow\\
\uparrow K\nasymp\rsupfun f(I\sqcup J) & \Leftrightarrow\\
\uparrow K\nasymp\rsupfun fI\sqcup\rsupfun fJ & \Leftrightarrow\\
\uparrow K\nasymp\rsupfun fI\lor\uparrow K\nasymp\rsupfun fJ & \Leftrightarrow\\
I\rsuprel fK\lor J\rsuprel fK.
\end{align*}
The rest follows from symmetry.\end{proof}
\begin{thm}
\label{fcd-as-cont}(fundamental theorem of theory of funcoids) Fix sets $A$ and $B$. Let $L_{F}=\mylambda
f{\mathsf{FCD}(A,B)}{\rsupfun f}$
and $L_{R}=\mylambda f{\mathsf{FCD}(A,B)}{\mathord{\rsuprel f}}$.
\begin{enumerate}
\item \label{main-f}$L_{F}$ is a bijection from the set $\mathsf{FCD}(A,B)$
to the set of functions $\alpha\in\mathscr{F}(B)^{\mathscr{T}A}$
that obey the conditions (for every $I,J\in\mathscr{T}A$)
\begin{equation}
\alpha\bot=\bot,\quad\alpha(I\sqcup J)=\alpha
I\sqcup\alpha J.\label{fchar-alph}
\end{equation}
For such $\alpha$ it holds (for every $\mathcal{X}\in\mathscr{F}(A)$)
\begin{equation}
\supfun{L_{F}^{-1}\alpha}\mathcal{X}=\bigsqcap\rsupfun{\alpha}\up\mathcal{X}
.\label{fchar-alph-c}
\end{equation}
\item \label{main-r}$L_{R}$ is a bijection from the set $\mathsf{FCD}(A,B)$
to the set of binary relations
$\delta\in\subsets(\mathscr{T}A\times\mathscr{T}B)$
that obey the conditions
\begin{equation}
\begin{aligned}\lnot(I & \mathrel\delta\bot), & I\sqcup
J\mathrel\delta K & \Leftrightarrow I\mathrel\delta K\lor J\mathrel\delta K &
\text{(for every \ensuremath{I,J\in\mathscr{T}A},
\ensuremath{K\in\mathscr{T}B})},\\
\lnot(\bot & \mathrel\delta I), & K\mathrel\delta I\sqcup J &
\Leftrightarrow K\mathrel\delta I\lor K\mathrel\delta J & \text{(for every
\ensuremath{I,J\in\mathscr{T}B}, \ensuremath{K\in\mathscr{T}A})}.
\end{aligned}
\label{f-char-delt}
\end{equation}
For such $\delta$ it holds (for every $\mathcal{X}\in\mathscr{F}(A)$,
$\mathcal{Y}\in\mathscr{F}(B)$)
\begin{equation}
\mathcal{X}\suprel{L_{R}^{-1}\delta}\mathcal{Y}\Leftrightarrow\forall
X\in\up\mathcal{X},Y\in\up\mathcal{Y}:X\mathrel\delta Y.\label{f-char-delt-c}
\end{equation}
\end{enumerate}
\end{thm}
\begin{proof}
Injectivity of $L_{F}$ and $L_{R}$, formulas (\ref{fchar-alph-c})
(for $\alpha\in\im L_{F}$) and (\ref{f-char-delt-c}) (for $\delta\in\im L_{R}$),
formulas (\ref{fchar-alph}) and (\ref{f-char-delt}) follow from
two previous theorems. The only thing remaining to prove is that for
every $\alpha$ and $\delta$ that obey the above conditions a corresponding
funcoid $f$ exists.
\begin{widedisorder}
\item [{\ref{main-r}}] Let define $\alpha\in\mathscr{F}(B)^{\mathscr{T}A}$
by the formula $\corestar(\alpha X)=\setcond{Y\in\mathscr{T}B}{X\mathrel\delta
Y}$
for every $X\in\mathscr{T}A$. (It is obvious that
$\setcond{Y\in\mathscr{T}B}{X\mathrel\delta Y}$
is a free star.) Analogously it can be defined
$\beta\in\mathscr{F}(A)^{\mathscr{T}B}$
by the formula $\corestar(\beta Y)=\setcond{X\in\mathscr{T}A}{X\mathrel\delta
Y}$.
Let's continue $\alpha$ and $\beta$ to
$\alpha'\in\mathscr{F}(B)^{\mathscr{F}(A)}$
and $\beta'\in\mathscr{F}(A)^{\mathscr{F}(B)}$ by the formulas
\[
\alpha'\mathcal{X}=\bigsqcap\rsupfun{\alpha}\up\mathcal{X}\quad\text{and}
\quad\beta'\mathcal{Y}=\bigsqcap\rsupfun{\beta}\up\mathcal{Y}
\]
and $\delta$ to $\delta'$ by the formula
\[
\mathcal{X}\mathrel{\delta'}\mathcal{Y}\Leftrightarrow\forall
X\in\up\mathcal{X},Y\in\up\mathcal{Y}:X\mathrel\delta Y.
\]
$\mathcal{Y}\sqcap\alpha'\mathcal{X}\ne\bot
\Leftrightarrow\mathcal{Y}\sqcap\bigsqcap\rsupfun{\alpha}\up\mathcal{X}\ne\bot
\Leftrightarrow\bigsqcap\rsupfun{\mathcal{Y}\sqcap}\rsupfun{
\alpha}\up\mathcal{X}\ne\bot$.
Let's prove that
\[
W=\rsupfun{\mathcal{Y}\sqcap}\rsupfun{\alpha}\up\mathcal{X}
\]
is a generalized filter base: To prove it is enough to show that
$\rsupfun{\alpha}\up\mathcal{X}$
is a generalized filter base. If
$\mathcal{A},\mathcal{B}\in\rsupfun{\alpha}\up\mathcal{X}$
then exist $X_{1},X_{2}\in\up\mathcal{X}$ such that $\mathcal{A}=\alpha X_{1}$,
$\mathcal{B}=\alpha X_{2}$.
Then $\alpha(X_{1}\sqcap X_{2})\in\rsupfun{\alpha}\up\mathcal{X}$.
So $\rsupfun{\alpha}\up\mathcal{X}$ is a generalized filter base
and thus $W$ is a generalized filter base.
By properties of generalized filter bases,
$\bigsqcap\rsupfun{\mathcal{Y}\sqcap}\rsupfun{\alpha}\mathcal{X}\ne\bot$
is equivalent to
\[
\forall X\in\up\mathcal{X}:\mathcal{Y}\sqcap\alpha X\ne\bot,
\]
what is equivalent to
\begin{align*}
\forall X\in\up\mathcal{X},Y\in\up\mathcal{Y}:\uparrow Y\sqcap\alpha
X\ne\bot & \Leftrightarrow\\
\forall X\in\up\mathcal{X},Y\in\up\mathcal{Y}:Y\in\corestar(\alpha X) &
\Leftrightarrow\\
\forall X\in\up\mathcal{X},Y\in\up\mathcal{Y}:X\mathrel\delta Y.
\end{align*}
Combining the equivalencies we get
$\mathcal{Y}\sqcap\alpha'\mathcal{X}\ne\bot
\Leftrightarrow\mathcal{X}\mathrel{\delta'}\mathcal{Y}$.
Analogously
$\mathcal{X}\sqcap\beta'\mathcal{Y}\ne\bot
\Leftrightarrow\mathcal{X}\mathrel{\delta'}\mathcal{Y}$.
So
$\mathcal{Y}\sqcap\alpha'\mathcal{X}\ne\bot
\Leftrightarrow\mathcal{X}\sqcap\beta'\mathcal{Y}\ne\bot$,
that is $(A,B,\alpha',\beta')$ is a funcoid. From the formula
$\mathcal{Y}\sqcap\alpha'\mathcal{X}\ne\bot^{\mathscr{F}(B)}
\Leftrightarrow\mathcal{X}\mathrel{\delta'}\mathcal{Y}$
it follows that
\[
X\rsuprel{(A,B,\alpha',\beta')}Y\Leftrightarrow\uparrow Y\sqcap\alpha'\uparrow
X\ne\bot\Leftrightarrow\uparrow X\mathrel{\delta'}\uparrow
Y\Leftrightarrow X\mathrel\delta Y.
\]
\item [{\ref{main-f}}] Let define the relation
$\delta\in\subsets(\mathscr{T}A\times\mathscr{T}B)$
by the formula $X\mathrel\delta Y\Leftrightarrow\uparrow Y\sqcap\alpha
X\ne\bot$.
That $\lnot(I\mathrel\delta\bot)$ and
$\lnot(\bot\mathrel\delta I)$
is obvious. We have
\begin{align*}
I\sqcup J\mathrel\delta K & \Leftrightarrow\\
\uparrow K\sqcap\alpha(I\sqcup J)\ne\bot & \Leftrightarrow\\
\uparrow K\sqcap(\alpha I\sqcup\alpha J)\ne\bot &
\Leftrightarrow\\
\uparrow K\sqcap\alpha I\ne\bot\lor\uparrow K\sqcap\alpha
J\ne\bot & \Leftrightarrow\\
I\mathrel\delta K\lor J\mathrel\delta K
\end{align*}
and
\begin{align*}
K\mathrel\delta I\sqcup J & \Leftrightarrow\\
\uparrow(I\sqcup J)\sqcap\alpha K\ne\bot & \Leftrightarrow\\
(\uparrow I\sqcup\uparrow J)\sqcap\alpha K\ne\bot &
\Leftrightarrow\\
\uparrow I\sqcap\alpha K\ne\bot\lor\uparrow J\sqcap\alpha
K\ne\bot & \Leftrightarrow\\
K\mathrel\delta I\lor K\mathrel\delta J.
\end{align*}
That is the formulas (\ref{f-char-delt}) are true.
Accordingly to the above there exists a funcoid $f$ such that
\[
\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\forall
X\in\up\mathcal{X},Y\in\up\mathcal{Y}:X\mathrel\delta Y.
\]
For every $X\in\mathscr{T}A$, $Y\in\mathscr{T}B$ we have:
\[
\uparrow Y\sqcap\supfun f\uparrow
X\ne\bot\Leftrightarrow\uparrow X\suprel f\uparrow
Y\Leftrightarrow X\mathrel\delta Y\Leftrightarrow\uparrow Y\sqcap\alpha
X\ne\bot,
\]
consequently $\forall X\in\mathscr{T}A:\alpha X=\supfun f\uparrow X=\rsupfun
fX$.
\end{widedisorder}
\end{proof}
Note that by the last theorem to every (quasi-)proximity $\delta$ corresponds
a unique funcoid. So funcoids are a generalization of (quasi-)proximity
structures. Reverse funcoids can be considered as a generalization
of conjugate quasi-proximity.
\begin{cor}
If $\alpha\in\mathscr{F}(B)^{\mathscr{T}A}$,
$\beta\in\mathscr{F}(A)^{\mathscr{T}B}$
are functions such that $Y\nasymp\alpha X\Leftrightarrow X\nasymp\beta Y$
for every $X\in\mathscr{T}A$, $Y\in\mathscr{T}B$, then there exists
exactly one funcoid $f$ such that $\langle f\rangle^{\ast}=\alpha$,
$\langle f^{-1}\rangle^{\ast}=\beta$.\end{cor}
\begin{proof}
Prove $\alpha(I\sqcup J)=\alpha I\sqcup\alpha J$. Really,
\begin{multline*}
Y\nasymp\alpha(I\sqcup J)\Leftrightarrow I\sqcup J\nasymp\beta Y\Leftrightarrow
I\nasymp\beta Y\vee J\nasymp\beta Y\Leftrightarrow\\ Y\nasymp\alpha I\vee
Y\nasymp\alpha J\Leftrightarrow Y\nasymp\alpha I\sqcup\alpha J.
\end{multline*}
So $\alpha(I\sqcup J)=\alpha I\sqcup\alpha J$ by star-separability.
Similarly $\beta(I\sqcup J)=\beta I\sqcup\beta J$.
Thus by the theorem there exists a funcoid $f$ such that $\langle
f\rangle^{\ast}=\alpha$,
$\langle f^{-1}\rangle^{\ast}=\beta$.
That this funcoid is unique, follows from the above.\end{proof}
\begin{defn}
Any $\mathbf{Rel}$-morphism $F:A\rightarrow B$ corresponds to a
funcoid $\uparrow^{\mathsf{FCD}}F\in\mathsf{FCD}(A,B)$, where by
definition
$\supfun{\uparrow^{\mathsf{FCD}}F}\mathcal{X}=\bigsqcap^{\mathscr{F}}\rsupfun{
\rsupfun F}\up\mathcal{X}$
for every $\mathcal{X}\in\mathscr{F}(A)$.
\end{defn}
Using the last theorem it is easy to show that this definition is
monovalued and does not contradict to former stuff. (Take
$\alpha=\uparrow\circ\rsupfun F$.)
\begin{prop}
$\rsupfun{\uparrow^{\mathsf{FCD}}f}X=\rsupfun fX$ for a
$\mathbf{Rel}$-morphism~$f$
and $X\in\mathscr{T}\Src f$.\end{prop}
\begin{proof}
$\rsupfun{\uparrow^{\mathsf{FCD}}f}X=\min\rsupfun{\uparrow}\rsupfun{\rsupfun
f}\up X=\uparrow\rsupfun fX=\rsupfun fX$.\end{proof}
\begin{cor}
$\mathord{\rsuprel{\uparrow^{\mathsf{FCD}}f}}=\mathord{\rsuprel f}$
for every $\mathbf{Rel}$-morphism~$f$.\end{cor}
\begin{proof}
$X\rsuprel{\uparrow^{\mathsf{FCD}}f}Y\Leftrightarrow
Y\nasymp\rsupfun{\uparrow^{\mathsf{FCD}}f}X\Leftrightarrow Y\nasymp\rsupfun
fX\Leftrightarrow X\rsuprel fY$
for $X\in\mathscr{T}\Src f$, $Y\in\mathscr{T}\Dst f$.\end{proof}
\begin{defn}
$\uparrow^{\mathsf{FCD}(A,B)}f=\uparrow^{\mathsf{FCD}}(A,B,f)$ for
every binary relation~$f$ between sets~$A$ and~$B$.
\end{defn}
\begin{defn}
\index{funcoid!principal}\index{principal!funcoid}Funcoids corresponding
to a binary relation (= multivalued function) are called \emph{principal
funcoids}.\end{defn}
\begin{prop}
$\uparrow^{\mathsf{FCD}}g\circ\uparrow^{\mathsf{FCD}}f=\uparrow^{\mathsf{FCD}}
(g\circ f)$
for composable morphisms~$f$,~$g$ of category~$\mathbf{Rel}$.\end{prop}
\begin{proof}
For every $X\in\mathscr{T}\Src f$
\begin{multline*}
\rsupfun{\uparrow^{\mathsf{FCD}}g\circ\uparrow^{\mathsf{FCD}}f}X=\rsupfun{
\uparrow^{\mathsf{FCD}}g}\rsupfun{\uparrow^{\mathsf{FCD}}f}X=\\
\rsupfun g\rsupfun fX=\rsupfun{g\circ
f}X=\rsupfun{\uparrow^{\mathsf{FCD}}(g\circ f)}X.
\end{multline*}
\end{proof}
We may equate principal funcoids with corresponding binary relations
by the method of appendix~\ref{app:prim-exists}. This is useful
for describing relationships of funcoids and binary relations, such
as for the formulas of continuous functions and continuous funcoids
(see below).
Thus $(\mathsf{FCD}(A,B),\mathbf{Rel}(A,B))$ is a filtrator. I call
it \emph{filtrator of funcoids}.
\begin{thm}
\label{supfun-genbase}If $S$ is a generalized filter base on $\Src f$
then $\supfun f\bigsqcap S=\bigsqcap\rsupfun{\supfun f}S$ for every
funcoid $f$.\end{thm}
\begin{proof}
$\supfun f\bigsqcap S\sqsubseteq\supfun fX$ for every $X\in S$ and
thus $\supfun f\bigsqcap S\sqsubseteq\bigsqcap\rsupfun{\supfun f}S$.
By properties of generalized filter bases:
\begin{align*}
\supfun f\bigsqcap S & =\\
\bigsqcap\rsupfun{\rsupfun f}\up\bigsqcap S & =\\
\bigsqcap\rsupfun{\rsupfun f}\setcond X{\exists\mathcal{P}\in
S:X\in\up\mathcal{P}} & =\\
\bigsqcap\setcond{\rsupfun fX}{\exists\mathcal{P}\in S:X\in\up\mathcal{P}} &
\sqsupseteq\\
\bigsqcap_{\mathcal{P}\in S}\supfun f\mathcal{P} & =\\
\bigsqcap\rsupfun{\supfun f}S.
\end{align*}
\end{proof}
\begin{prop}
$\mathcal{X}\suprel f\bigsqcap S\Leftrightarrow\exists\mathcal{Y}\in
S:\mathcal{X}\suprel f\mathcal{Y}$
if $f$ is a funcoid and $S$ is a generalized filter base on $\Dst f$.\end{prop}
\begin{proof}
~
\begin{multline*}
\mathcal{X}\suprel f\bigsqcap S\Leftrightarrow\bigsqcap S\sqcap\supfun
f\mathcal{X}\neq\bot\Leftrightarrow\bigsqcap\langle\langle
f\rangle\mathcal{X}\sqcap\rangle^{\ast}S\neq\bot\Leftrightarrow\\
\text{(by properties of generalized filter bases)}\Leftrightarrow\\
\exists\mathcal{Y}\in\langle\supfun
f\mathcal{X}\sqcap\rangle^{\ast}S:\mathcal{Y}
\neq\bot\Leftrightarrow\exists\mathcal{Y}\in S:\langle
f\rangle\mathcal{X}\sqcap\mathcal{Y}\neq\bot\Leftrightarrow\exists\mathcal{Y}\in
S:\mathcal{X}\suprel f\mathcal{Y}.
\end{multline*}
\end{proof}
\begin{defn}
\index{preserve filtered meets}
A function $f$ between two posets is said to \emph{preserve filtered meets}, when $f\bigsqcap S=\bigsqcap\rsupfun{f}S$
whenever $\bigsqcap S$ is defined for a filter base~$S$ on the first of the two posets.
\end{defn}
\begin{thm}
\label{fcd-as-func}(discovered by \noun{Todd Trimble}) A function
$\varphi:\mathscr{F}(A)\rightarrow\mathscr{F}(B)$ preserves finite
joins (including nullary joins) and filtered meets iff there exists
a funcoid $f$ such that $\supfun f=\varphi$.\end{thm}
\begin{proof}
Backward implication follows from above.
Let $\psi=\varphi|_{\mathscr{T}A}$. Then $\psi$ preserves bottom
element and binary joins. Thus there exists a funcoid $f$ such that
$\rsupfun f=\psi$.
It remains to prove that $\supfun f=\varphi$.
Really, $\supfun f\mathcal{X}=\bigsqcap\rsupfun{\rsupfun
f}\up\mathcal{X}=\bigsqcap\rsupfun{\psi}\up\mathcal{X}=\bigsqcap\rsupfun{\varphi
}\up\mathcal{X}=\varphi\bigsqcap\up\mathcal{X}=\varphi\mathcal{X}$
for every $\mathcal{X}\in\mathscr{F}(A)$.\end{proof}
\begin{cor}
Funcoids $f$ from $A$ to $B$ bijectively correspond by the formula
$\langle f\rangle=\varphi$ to functions
$\varphi:\mathscr{F}(A)\rightarrow\mathscr{F}(B)$
preserving finite joins and filtered meets.
\end{cor}
\section{\label{fcd-rel-another}Another way to represent funcoids as binary
relations}
This is based on a\noun{ Todd Trimble}'s idea.
\begin{defn}
The binary relation
$\xi^{\circledast}\in\subsets(\mathscr{F}(\Src\xi)\times\mathscr{F}(\Dst\xi))$
for a funcoid $\xi$ is defined by the formula
$\mathcal{A}\mathrel{\xi^{\circledast}}\mathcal{B}\Leftrightarrow\mathcal{B}
\sqsupseteq\langle\xi\rangle\mathcal{A}$.
\end{defn}
\begin{defn}
The binary relation
$\xi^{\ast}\in\subsets(\mathscr{T}\Src\xi\times\mathscr{T}\Dst\xi)$
for a funcoid $\xi$ is defined by the formula
\[
A\mathrel{\xi^{\ast}}B\Leftrightarrow B\sqsupseteq\langle\xi\rangle
A\Leftrightarrow B\in\up\langle\xi\rangle A.
\]
\end{defn}
\begin{prop}
Funcoid $\xi$ can be restored from
\begin{enumerate}
\item the value of $\xi^{\circledast}$;
\item the value of $\xi^{\ast}$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{enumerate}
\item The value of $\supfun{\xi}$ can be restored from $\xi^{\circledast}$.
\item The value of $\rsupfun{\xi}$ can be restored from $\xi^{\ast}$.
\end{enumerate}
\end{proof}
\begin{thm}
Let $\nu$ and $\xi$ be composable funcoids. Then:
\begin{enumerate}
\item
\label{fcomp-1}$\xi^{\circledast}\circ\nu^{\circledast}=(\xi\circ\nu)^{
\circledast}$;
\item \label{fcomp-2}$\xi^{\ast}\circ\nu^{\ast}=(\xi\circ\nu)^{\ast}$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{fcomp-1}}]
\begin{multline*}
\mathcal{A}\mathrel{(\xi^{\circledast}\circ\nu^{\circledast})}\mathcal{C}
\Leftrightarrow\exists\mathcal{B}:\left(\mathcal{A}\mathrel{\nu^{\circledast}}
\mathcal{B}\wedge\mathcal{B}\mathrel{\xi^{\circledast}}\mathcal{C}
\right)\Leftrightarrow\\
\exists\mathcal{B}\in\mathscr{F}(\Dst\nu):(\mathcal{B}\sqsupseteq\supfun{\nu}
\mathcal{A}\wedge\mathcal{C}\sqsupseteq\supfun{\xi}\mathcal{B})\Leftrightarrow\\
\mathcal{C}\sqsupseteq\supfun{\xi}\supfun{\nu}\mathcal{A}\Leftrightarrow\mathcal
{C}\sqsupseteq\supfun{\xi\circ\nu}\mathcal{A}\Leftrightarrow\mathcal{A}\mathrel{
(\xi\circ\nu)^{\circledast}}\mathcal{C}.
\end{multline*}
\item [{\ref{fcomp-2}}] ~
\begin{multline*}
A\mathrel{(\xi^{\ast}\circ\nu^{\ast})}C\Leftrightarrow\exists
B:\left(A\mathrel{\nu^{\ast}}B\wedge
B\mathrel{\xi^{\ast}}C\right)\Leftrightarrow\\
\exists B:(B\in\up\supfun{\nu}A\wedge
C\in\up\supfun{\xi}B)\Leftrightarrow\exists
B\in\up\supfun{\nu}A:C\in\up\supfun{\xi}B.
\end{multline*}
\end{widedisorder}
$A\mathrel{(\xi\circ\nu)^{\ast}}C\Leftrightarrow C\in\up\langle\xi\circ\nu\rangle
B\Leftrightarrow C\in\up\langle\xi\rangle\supfun{\nu}B$.
It remains to prove
\[
\exists B\in\up\supfun{\nu}A:C\in\up\langle\xi\rangle B\Leftrightarrow
C\in\up\supfun{\xi}\langle\nu\rangle A.
\]
$\exists B\in\up\supfun{\nu}A:C\in\up\langle\xi\rangle B\Rightarrow
C\in\up\supfun{\xi}\supfun{\nu}A$
is obvious.
Let $C\in\up\supfun{\xi}\supfun{\nu}A$. Then
$C\in\up\bigsqcap\rsupfun{\supfun{\xi}}\up\supfun{\nu}A$;
so by properties of generalized filter bases, $\exists
P\in\rsupfun{\supfun{\xi}}\up\supfun{\nu}A:C\in\up P$;
$\exists B\in\up\supfun{\nu}A:C\in\up\supfun{\xi}B$.
\end{proof}
\begin{rem}
The above theorem is interesting by the fact that composition of funcoids
is represented as relational composition of binary relations.
\end{rem}
\section{Lattices of funcoids}
\begin{defn}
$f\sqsubseteq g\eqdef\mathord{\suprel f}\subseteq\mathord{\suprel g}$ for $f,g\in\mathsf{FCD}(A,B)$
for every sets $A$, $B$.
\end{defn}
Thus every $\mathsf{FCD}(A,B)$ is a poset. (It's taken into account
that $\mathord{\suprel f}\ne\mathord{\suprel g}$ when $f\ne g$.)
\index{filtrator!of funcoids}We will consider filtrators (\emph{filtrators
of funcoids}) whose base is $\mathsf{FCD}(A,B)$ and whose core are
principal funcoids from $A$ to $B$.
\begin{lem}\label{fcd-up-x-lem}
$\rsupfun fX=\bigsqcap_{F\in\up f}^{\mathscr{F}}\rsupfun FX$ for
every funcoid $f$ and typed set $X\in\mathscr{T}(\Src f)$.\end{lem}
\begin{proof}
Obviously $\rsupfun fX\sqsubseteq\bigsqcap_{F\in\up f}^{\mathscr{F}}\rsupfun
FX$.
Let $B\in\up\rsupfun fX$. Let $F_{B}=X\times B\sqcup\overline{X}\times\top$.
$\rsupfun{F_{B}}X=B$.
Let $P\in\mathscr{T}(\Src f)$. We have
\[
\bot\ne P\sqsubseteq
X\Rightarrow\rsupfun{F_{B}}P=B\sqsupseteq\rsupfun fP
\]
and
\[
P\nsqsubseteq
X\Rightarrow\rsupfun{F_{B}}P=\top\sqsupseteq\rsupfun fP.
\]
Thus $\rsupfun{F_{B}}P\sqsupseteq\rsupfun fP$ for every $P$ and
so $F_{B}\sqsupseteq f$ that
is $F_{B}\in\up f$.
Thus $\forall B\in\up\rsupfun fX:B\in\up\bigsqcap_{F\in\up
f}^{\mathscr{F}}\rsupfun FX$
because $B\in\up\rsupfun{F_{B}}X$.
So $\bigsqcap_{F\in\up f}\rsupfun FX\sqsubseteq\rsupfun fX$.\end{proof}
\begin{thm}
\label{fcd-up-x}$\supfun f\mathcal{X}=\bigsqcap_{F\in\up f}^{\mathscr{F}}\supfun
F\mathcal{X}$
for every funcoid $f$ and $\mathcal{X}\in\mathscr{F}(\Src f)$.\end{thm}
\begin{proof}
~
\begin{align*}
\bigsqcap_{F\in\up f}^{\mathscr{F}}\supfun F\mathcal{X} & =\\
\bigsqcap_{F\in\up f}^{\mathscr{F}}\bigsqcap^{\mathscr{F}}\rsupfun{\rsupfun F}\up\mathcal{X} & =\\
\bigsqcap_{F\in\up
f}^{\mathscr{F}}\bigsqcap_{X\in\up\mathcal{X}}^{\mathscr{F}}\rsupfun FX & =\\
\bigsqcap_{X\in\up\mathcal{X}}^{\mathscr{F}}\bigsqcap_{F\in\up
f}^{\mathscr{F}}\rsupfun FX & =\\
\bigsqcap_{X\in\up\mathcal{X}}^{\mathscr{F}}\rsupfun fX & =\\
\supfun f\mathcal{X}
\end{align*}
(the lemma used).
\end{proof}
Below it is shown that $\mathsf{FCD}(A,B)$ are complete lattices
for every sets $A$ and $B$. We will apply lattice operations to
subsets of such sets without explicitly mentioning $\mathsf{FCD}(A,B)$.
\begin{thm}
\label{fcd-join-sets}$\mathsf{FCD}(A,B)$ is a complete lattice (for
every sets $A$ and $B$). For every $R\in\subsets\mathsf{FCD}(A,B)$
and $X\in\mathscr{T}A$, $Y\in\mathscr{T}B$
\begin{enumerate}
\item \label{sr-join}$X\rsuprel{\bigsqcup R}Y\Leftrightarrow\exists f\in
R:X\rsuprel fY$;
\item \label{sf-join}$\rsupfun{\bigsqcup R}X=\bigsqcup_{f\in R}\rsupfun fX$.
\end{enumerate}
\end{thm}
\begin{proof}
Accordingly \cite{pm:complete-lattice-criteria} to prove that it
is a complete lattice it's enough to prove existence of all joins.
\begin{widedisorder}
\item [{\ref{sf-join}}] $\alpha X\eqdef\bigsqcup_{f\in R}\rsupfun fX$.
We have $\alpha\bot=\bot$;
\begin{align*}
\alpha(I\sqcup J) & =\\