-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-convergence.tex
447 lines (395 loc) · 22 KB
/
chap-convergence.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
\chapter{Convergence of funcoids}
\section{Convergence}
The following generalizes the well-known notion of a filter convergent
to a point or to a set:
\begin{defn}
\index{converges!regarding funcoid}A filter $\mathcal{F}\in\mathscr{F}(\Dst\mu)$
\emph{converges} to a filter $\mathcal{A}\in\mathscr{F}(\Src\mu)$
regarding a funcoid $\mu$ ($\mathcal{F}\overset{\mu}{\rightarrow}\mathcal{A}$)
iff $\mathcal{F}\sqsubseteq\supfun{\mu}\mathcal{A}$.
\end{defn}
\begin{defn}
\index{converges!regarding funcoid}A funcoid $f$ \emph{converges}
to a filter $\mathcal{A}\in\mathscr{F}(\Src\mu)$ regarding a funcoid
$\mu$ where $\Dst f=\Dst\mu$ (denoted $f\overset{\mu}{\rightarrow}\mathcal{A}$)
iff $\im f\sqsubseteq\supfun{\mu}\mathcal{A}$ that is iff $\im f\overset{\mu}{\rightarrow}\mathcal{A}$.
\end{defn}
\begin{defn}
\index{converges!regarding funcoid}A funcoid $f$ \emph{converges}
to a filter $\mathcal{A}\in\mathscr{F}(\Src\mu)$ on a filter $\mathcal{B}\in\mathscr{F}(\Src f)$
regarding a funcoid $\mu$ where $\Dst f=\Dst\mu$ iff $f|_{\mathcal{B}}\overset{\mu}{\rightarrow}\mathcal{A}$.\end{defn}
\begin{obvious}
A funcoid $f$ converges to a filter
$\mathcal{A}\in\mathscr{F}(\Src\mu)$ on a filter
$\mathcal{B}\in\mathscr{F}(\Src f)$ regarding a funcoid $\mu$ iff
$\supfun{f}\mathcal{B}\sqsubseteq\supfun{\mu}\mathcal{A}$.
\end{obvious}
\begin{rem}
We can define also convergence for a reloid $f$: $f\overset{\mu}{\rightarrow}\mathcal{A}\Leftrightarrow\im f\sqsubseteq\supfun{\mu}\mathcal{A}$
or what is the same $f\overset{\mu}{\rightarrow}\mathcal{A}\Leftrightarrow\tofcd f\overset{\mu}{\rightarrow}\mathcal{A}$.\end{rem}
\begin{thm}
Let $f$, $g$ be funcoids, $\mu$, $\nu$ be endofuncoids, $\Dst f=\Src g=\Ob\mu$,
$\Dst g=\Ob\nu$, $\mathcal{A}\in\mathscr{F}(\Ob\mu)$. If $f\overset{\mu}{\rightarrow}\mathcal{A}$,
\[
g|_{\supfun{\mu}\mathcal{A}}\in\continuous(\mu\sqcap(\supfun{\mu}\mathcal{A}\times^{\mathsf{FCD}}\supfun{\mu}\mathcal{A}),\nu),
\]
and $\supfun{\mu}\mathcal{A}\sqsupseteq\mathcal{A}$, then $g\circ f\overset{\nu}{\rightarrow}\supfun g\mathcal{A}$.\end{thm}
\begin{proof}
~
\begin{gather*}
\im f\sqsubseteq\supfun{\mu}\mathcal{A};\\
\supfun g\im f\sqsubseteq\supfun g\supfun{\mu}\mathcal{A};\\
\im(g\circ f)\sqsubseteq\supfun{g|_{\supfun{\mu}\mathcal{A}}}\supfun{\mu}\mathcal{A};\\
\im(g\circ f)\sqsubseteq\supfun{g|_{\supfun{\mu}\mathcal{A}}}\supfun{\mu\sqcap(\supfun{\mu}\mathcal{A}\times^{\mathsf{FCD}}\supfun{\mu}\mathcal{A})}\mathcal{A};\\
\im(g\circ f)\sqsubseteq\supfun{g|_{\supfun{\mu}\mathcal{A}}\circ(\mu\sqcap(\supfun{\mu}\mathcal{A}\times^{\mathsf{FCD}}\supfun{\mu}\mathcal{A}))}\mathcal{A};\\
\im(g\circ f)\sqsubseteq\supfun{\nu\circ g|_{\supfun{\mu}\mathcal{A}}}\mathcal{A};\\
\im(g\circ f)\sqsubseteq\supfun{\nu\circ g}\mathcal{A};\\
g\circ f\overset{\nu}{\rightarrow}\supfun g\mathcal{A}.
\end{gather*}
\end{proof}
\begin{cor}
Let $f$, $g$ be funcoids, $\mu$, $\nu$ be endofuncoids, $\Dst f=\Src g=\Ob\mu$,
$\Dst g=\Ob\nu$, $\mathcal{A}\in\mathscr{F}(\Ob\mu)$. If $f\overset{\mu}{\rightarrow}\mathcal{A}$,
$g\in\continuous(\mu,\nu)$, and $\supfun{\mu}\mathcal{A}\sqsupseteq\mathcal{A}$
then $g\circ f\overset{\nu}{\rightarrow}\supfun g\mathcal{A}$.\end{cor}
\begin{proof}
From the last theorem and theorem \ref{rect-cont}.
\end{proof}
\section{Relationships between convergence and continuity}
\begin{lem}
Let $\mu$, $\nu$ be endofuncoids, $f\in\mathsf{FCD}(\Ob\mu,\Ob\nu)$,
$\mathcal{A}\in\mathscr{F}(\Ob\mu)$, $\Src f=\Ob\mu$, $\Dst f=\Ob\nu$.
If $f\in\continuous(\mu|_{\mathcal{A}},\nu)$ then
\[
f|_{\supfun{\mu}\mathcal{A}}\overset{\nu}{\rightarrow}\supfun f\mathcal{A}\Leftrightarrow\supfun{f\circ\mu|_{\mathcal{A}}}\mathcal{A}\sqsubseteq\supfun{\nu\circ f}\mathcal{A}.
\]
\end{lem}
\begin{proof}
~
\begin{multline*}
f|_{\supfun{\mu}\mathcal{A}}\overset{\nu}{\rightarrow}\supfun f\mathcal{A}\Leftrightarrow\im f|_{\supfun{\mu}\mathcal{A}}\sqsubseteq\supfun{\nu}\supfun f\mathcal{A}\Leftrightarrow\\
\supfun f\supfun{\mu}\mathcal{A}\sqsubseteq\supfun{\nu}\supfun f\mathcal{A}\Leftrightarrow\supfun{f\circ\mu}\mathcal{A}\sqsubseteq\supfun{\nu\circ f}\mathcal{A}\Leftrightarrow\supfun{f\circ\mu|_{\mathcal{A}}}\mathcal{A}\sqsubseteq\supfun{\nu\circ f}\mathcal{A}.
\end{multline*}
\end{proof}
\begin{thm}
Let $\mu$, $\nu$ be endofuncoids, $f\in\mathsf{FCD}(\Ob\mu,\Ob\nu)$,
$\mathcal{A}\in\mathscr{F}(\Ob\mu)$, $\Src f=\Ob\mu$, $\Dst f=\Ob\nu$.
If $f\in\continuous(\mu|_{\mathcal{A}},\nu)$ then $f|_{\supfun{\mu}\mathcal{A}}\overset{\nu}{\rightarrow}\supfun f\mathcal{A}$.\end{thm}
\begin{proof}
~
\begin{multline*}
f|_{\supfun{\mu}\mathcal{A}}\overset{\nu}{\rightarrow}\supfun f\mathcal{A}\Leftrightarrow\text{(by the lemma)}\Leftrightarrow\supfun{f\circ\mu|_{\mathcal{A}}}\mathcal{A}\sqsubseteq\supfun{\nu\circ f}\mathcal{A}\Leftarrow\\
f\circ\mu|_{\mathcal{A}}\sqsubseteq\nu\circ f\Leftrightarrow f\in\continuous(\mu|_{\mathcal{A}},\nu).
\end{multline*}
\end{proof}
\begin{cor}
Let $\mu$, $\nu$ be endofuncoids, $f\in\mathsf{FCD}(\Ob\mu,\Ob\nu)$,
$\mathcal{A}\in\mathscr{F}(\Ob\mu)$, $\Src f=\Ob\mu$, $\Dst f=\Ob\nu$.
If $f\in\continuous(\mu,\nu)$ then $f|_{\supfun{\mu}\mathcal{A}}\overset{\nu}{\rightarrow}\supfun f\mathcal{A}$.\end{cor}
\begin{thm}
Let $\mu$, $\nu$ be endofuncoids, $f\in\mathsf{FCD}(\Ob\mu,\Ob\nu)$,
$\mathcal{A}\in\mathscr{F}(\Ob\mu)$ be an ultrafilter, $\Src f=\Ob\mu$,
$\Dst f=\Ob\nu$. $f\in\continuous(\mu|_{\mathcal{A}},\nu)$ iff $f|_{\supfun{\mu}\mathcal{A}}\overset{\nu}{\rightarrow}\supfun f\mathcal{A}$.\end{thm}
\begin{proof}
~
\begin{multline*}
f|_{\supfun{\mu}\mathcal{A}}\overset{\nu}{\rightarrow}\supfun f\mathcal{A}\Leftrightarrow\text{(by the lemma)}\Leftrightarrow\supfun{f\circ\mu|_{\mathcal{A}}}\mathcal{A}\sqsubseteq\supfun{\nu\circ f}\mathcal{A}\Leftrightarrow\\
\text{(used the fact that \ensuremath{\mathcal{A}} is an ultrafilter)}\\
f\circ\mu|_{\mathcal{A}}\sqsubseteq\nu\circ f|_{\mathcal{A}}\Leftrightarrow f\circ\mu|_{\mathcal{A}}\sqsubseteq\nu\circ f\Leftrightarrow f\in\continuous(\mu|_{\mathcal{A}},\nu).
\end{multline*}
\end{proof}
\section{Convergence of join}
\begin{prop}
$\bigsqcup S\overset{\mu}{\rightarrow}\mathcal{A} \Leftrightarrow \forall\mathcal{F}\in S:\mathcal{F}\overset{\mu}{\rightarrow}\mathcal{A}$
for every collection~$S$ of filters on~$\Dst\mu$ and filter~$\mathcal{A}$ on~$\Src\mu$, for every funcoid~$\mu$.
\end{prop}
\begin{proof}
~
\[\bigsqcup S\overset{\mu}{\rightarrow}\mathcal{A} \Leftrightarrow \bigsqcup S\sqsubseteq\supfun{\mu}\mathcal{A} \Leftrightarrow
\forall\mathcal{F}\in S:\mathcal{F}\sqsubseteq\supfun{\mu}\mathcal{A} \Leftrightarrow \forall\mathcal{F}\in S:\mathcal{F}\overset{\mu}{\rightarrow}\mathcal{A}.\]
\end{proof}
\begin{cor}
$\bigsqcup F\overset{\mu}{\rightarrow}\mathcal{A} \Leftrightarrow \forall f\in F:f\overset{\mu}{\rightarrow}\mathcal{A}$
for every collection~$F$ of funcoids~$f$ such that $\Dst f=\Dst\mu$ and filter~$\mathcal{A}$ on~$\Src\mu$, for every funcoid~$\mu$.
\end{cor}
\begin{proof}
By corollary~\ref{fcd-dom-join} we have
\begin{multline*}
\bigsqcup F\overset{\mu}{\rightarrow}\mathcal{A} \Leftrightarrow \im\bigsqcup F\overset{\mu}{\rightarrow}\mathcal{A} \Leftrightarrow
\bigsqcup\rsupfun{\im}F\overset{\mu}{\rightarrow}\mathcal{A} \Leftrightarrow \\
\forall f\in\rsupfun{\im}F:\mathcal{F}\overset{\mu}{\rightarrow}\mathcal{A} \Leftrightarrow
\forall f\in F:\im f\overset{\mu}{\rightarrow}\mathcal{A} \Leftrightarrow
\forall f\in F:f\overset{\mu}{\rightarrow}\mathcal{A}.
\end{multline*}
\end{proof}
\begin{thm}
$f|_{\mathcal{B}_0\sqcup\mathcal{B}_1}\overset{\mu}{\rightarrow}\mathcal{A} \Leftrightarrow
f|_{\mathcal{B}_0}\overset{\mu}{\rightarrow}\mathcal{A} \land f|_{\mathcal{B}_1}\overset{\mu}{\rightarrow}\mathcal{A}$.
for all filters~$\mathcal{A}$, $\mathcal{B}_0$, $\mathcal{B}_1$ and funcoids~$\mu$, $f$ and~$g$ on suitable sets.
\end{thm}
\begin{proof}
As easily follows from distributivity of the lattices of funcoids we have
$f|_{\mathcal{B}_0\sqcup\mathcal{B}_1} = f|_{\mathcal{B}_0}\sqcup f|_{\mathcal{B}_1}$.
Thus our theorem follows from the previous corollary.
\end{proof}
\section{Limit}
\begin{defn}
\index{limit}$\lim^{\mu}f=a$ iff $f\overset{\mu}{\rightarrow}\uparrow^{\Src\mu}\{a\}$
for a $T_{2}$-separable funcoid $\mu$ and a non-empty funcoid $f$
such that $\Dst f=\Dst\mu$.
\end{defn}
It is defined correctly, that is $f$ has no more than one limit.
\begin{proof}
Let $\lim^{\mu}f=a$ and $\lim^{\mu}f=b$. Then $\im f\sqsubseteq\rsupfun{\mu}@\{a\}$
and $\im f\sqsubseteq\rsupfun{\mu}@\{b\}$.
Because $f\ne\bot^{\mathsf{FCD}(\Src f,\Dst f)}$ we have $\im f\ne\bot^{\mathscr{F}(\Dst f)}$;
$\rsupfun{\mu}@\{a\}\sqcap\rsupfun{\mu}@\{b\}\ne\bot^{\mathscr{F}(\Dst f)}$;
$\uparrow^{\Src\mu}\{b\}\sqcap\supfun{\mu^{-1}}\rsupfun{\mu}@\{a\}\ne\bot^{\mathscr{F}(\Src\mu)}$;
$\uparrow^{\Src\mu}\{b\}\sqcap\supfun{\mu^{-1}\circ\mu}@\{a\}\ne\bot^{\mathscr{F}(\Src\mu)}$;
$@\{a\}\suprel{\mu^{-1}\circ\mu}@\{b\}$.
Because $\mu$ is $T_{2}$-separable we have $a=b$.\end{proof}
\begin{defn}
$\lim_{\mathcal{B}}^{\mu}f=\lim^{\mu}(f|_{\mathcal{B}})$.\end{defn}
\begin{rem}
We can also in an obvious way define limit of a reloid.
\end{rem}
\section{Generalized limit}
\subsection{\index{limit!generalized}Definition}
Let $\mu$ and $\nu$ be endofuncoids. Let $G$ be a transitive permutation
group on $\Ob\mu$.
For an element $r\in G$ we will denote $\uparrow r=\uparrow^{\mathsf{FCD}(\Ob\mu,\Ob\mu)}r$.
We require that $\mu$ and every $r\in G$ commute, that is
\[
\mu\circ\uparrow r=\uparrow r\circ\mu.
\]
We require for every $y\in\Ob\nu$
\begin{equation}
\nu\sqsupseteq\rsupfun{\nu}@\{y\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\}.\label{lim-squares}
\end{equation}
\begin{prop}
Formula (\ref{lim-squares}) follows from $\nu\sqsupseteq\nu\circ\nu^{-1}$.\end{prop}
\begin{proof}
Let $\nu\sqsupseteq\nu\circ\nu^{-1}$. Then
\begin{align*}
\rsupfun{\nu}@\{y\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\} & =\\
\supfun{\nu}@\{y\}\times^{\mathsf{FCD}}\supfun{\nu}@\{y\} & =\\
\nu\circ(\uparrow^{\Ob\nu}\{y\}\times^{\mathsf{FCD}}\uparrow^{\Ob\nu}\{y\})\circ\nu^{-1} & =\\
\nu\circ\uparrow^{\mathsf{FCD}(\Ob\nu,\Ob\nu)}(\{y\}\times\{y\})\circ\nu^{-1} & \sqsubseteq\\
\nu\circ1_{\Ob\nu}^{\mathsf{FCD}}\circ\nu^{-1} & =\\
\nu\circ\nu^{-1} & \sqsubseteq\nu.
\end{align*}
\end{proof}
\begin{rem}
The formula (\ref{lim-squares}) usually works if $\nu$ is a proximity.
It does not work if $\mu$ is a pretopology or preclosure.
\end{rem}
We are going to consider (generalized) limits of arbitrary functions
acting from $\Ob\mu$ to $\Ob\nu$. (The functions in consideration
are not required to be continuous.)
\begin{rem}
Most typically $G$ is the group of translations of some topological
vector space.
\end{rem}
\emph{Generalized limit} is defined by the following formula:
\begin{defn}
\index{limit!generalized}$\xlim f\eqdef\setcond{\nu\circ f\circ\uparrow r}{r\in G}$
for any funcoid $f$.\end{defn}
\begin{rem}
Generalized limit technically is a set of funcoids.
\end{rem}
We will assume that $\dom f\sqsupseteq\rsupfun{\mu}@\{x\}$.
\begin{defn}
$\xlim_{x}f=\xlim f|_{\rsupfun{\mu}@\{x\}}$.\end{defn}
\begin{obvious}
$\xlim_{x}f=\setcond{\nu\circ f|_{\rsupfun{\mu}@\{x\}}\circ\uparrow r}{r\in G}$.\end{obvious}
\begin{rem}
$\xlim_{x}f$ is the same for funcoids $\mu$ and $\Compl\mu$.
\end{rem}
The function $\tau$ will define an injection from the set of points
of the space $\nu$ (``numbers'', ``points'', or ``vectors'')
to the set of all (generalized) limits (i.e. values which $\xlim_{x}f$
may take).
\begin{defn}
$\tau(y)\eqdef\setcond{\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\}}{x\in D}$.\end{defn}
\begin{prop}
$\tau(y)=\setcond{(\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\})\circ\uparrow r}{r\in G}$
for every (fixed) $x\in D$.\end{prop}
\begin{proof}
~
\begin{align*}
(\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\})\circ\uparrow r & =\\
\supfun{\uparrow r^{-1}}\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\} & =\\
\supfun{\mu}\rsupfun{\uparrow r^{-1}}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\} & =\\
\rsupfun{\mu}@\{r^{-1}x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\} & \in \setcond{\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\}}{x\in D}.
\end{align*}
Reversely $\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\}=(\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\})\circ\uparrow e$
where $e$ is the identify element of $G$.\end{proof}
\begin{prop}
$\tau(y)=\xlim(\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\uparrow^{\Base(\Ob\nu)}\{y\})$
(for every $x$). Informally: Every $\tau(y)$ is a generalized limit
of a constant funcoid.\end{prop}
\begin{proof}
~
\begin{align*}
\xlim(\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\uparrow^{\Base(\Ob\nu)}\{y\}) & =\\
\setcond{\nu\circ(\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\uparrow^{\Base(\Ob\nu)}\{y\})\circ\uparrow r}{r\in G} & =\\
\setcond{(\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\})\circ\uparrow r}{r\in G} & =\tau(y).
\end{align*}
\end{proof}
\begin{thm}
If $f$ is a function and $f|_{\rsupfun{\mu}@\{x\}}\in\continuous(\mu,\nu)$
and $\rsupfun{\mu}@\{x\}\sqsupseteq\uparrow^{\Ob\mu}\{x\}$
then $\xlim_{x}f=\tau(fx)$.\end{thm}
\begin{proof}
$f|_{\rsupfun{\mu}@\{x\}}\circ\mu\sqsubseteq\nu\circ f|_{\rsupfun{\mu}@\{x\}}\sqsubseteq\nu\circ f$;
thus $\langle f\rangle\rsupfun{\mu}@\{x\}\sqsubseteq\supfun{\nu}\rsupfun{f}@\{x\}$;
consequently we have
\begin{gather*}
\nu\sqsupseteq\supfun{\nu}\rsupfun{f}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\}\sqsupseteq\supfun f\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\}.\\
\begin{aligned}\nu\circ f|_{\rsupfun{\mu}@\{x\}} & \sqsupseteq\\
(\supfun f\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\})\circ f|_{\rsupfun{\mu}@\{x\}} & =\\
(f|_{\rsupfun{\mu}\{x\}})^{-1}\supfun f\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\} & \sqsupseteq\\
\supfun{\id_{\dom f|_{\rsupfun{\mu}\{x\}}}^{\mathsf{FCD}}}\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\} & \sqsupseteq\\
\dom f|_{\rsupfun{\mu}@\{x\}}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\} & =\\
\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\}.
\end{aligned}
\end{gather*}
$\im(\nu\circ f|_{\rsupfun{\mu}@\{x\}})=\supfun{\nu}\rsupfun{f}@\{x\}$;
\begin{align*}
\nu\circ f|_{\rsupfun{\mu}@\{x\}} & \sqsubseteq\\
\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\im(\nu\circ f|_{\rsupfun{\mu}@\{x\}}) & =\\
\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\}.
\end{align*}
So $\nu\circ f|_{\rsupfun{\mu}@\{x\}}=\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\}$.
Thus $\xlim_{x}f=\setcond{(\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{f}@\{x\})\circ\uparrow r}{r\in G}=\tau(fx)$.\end{proof}
\begin{rem}
Without the requirement of $\rsupfun{\mu}@\{x\}\sqsupseteq\uparrow^{\Ob\mu}\{x\}$
the last theorem would not work in the case of removable singularity.\end{rem}
\begin{thm}
Let $\nu\sqsubseteq\nu\circ\nu$. If $f|_{\rsupfun{\mu}@\{x\}}\overset{\nu}{\rightarrow}\uparrow^{\Ob\mu}\{y\}$
then $\xlim_{x}f=\tau(y)$.\end{thm}
\begin{proof}
$\im f|_{\rsupfun{\mu}@\{x\}}\sqsubseteq\rsupfun{\nu}@\{y\}$;
$\supfun f\rsupfun{\mu}@\{x\}\sqsubseteq\rsupfun{\nu}@\{y\}$;
\begin{align*}
\nu\circ f|_{\rsupfun{\mu}@\{x\}} & \sqsupseteq\\
(\rsupfun{\nu}@\{y\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\})\circ f|_{\rsupfun{\mu}@\{x\}} & =\\
\supfun{(f|_{\rsupfun{\mu}@\{x\}})^{-1}}\rsupfun{\nu}@\{y\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\} & =\\
\supfun{\id_{\rsupfun{\mu}\{x\}}^{\mathsf{FCD}}\circ f^{-1}}\rsupfun{\nu}@\{y\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\} & \sqsupseteq\\
\supfun{\id_{\rsupfun{\mu}\{x\}}^{\mathsf{FCD}}\circ f^{-1}}\supfun f\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\} & =\\
\supfun{\id_{\rsupfun{\mu}\{x\}}^{\mathsf{FCD}}}\supfun{f^{-1}\circ f}\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\} & \sqsupseteq\\
\supfun{\id_{\rsupfun{\mu}\{x\}}^{\mathsf{FCD}}}\supfun{\id_{\rsupfun{\mu}\{x\}}^{\mathsf{FCD}}}\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\} & =\\
\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\}.
\end{align*}
On the other hand, $f|_{\rsupfun{\mu}@\{x\}}\sqsubseteq\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\}$;
$\nu\circ f|_{\rsupfun{\mu}@\{x\}}\sqsubseteq\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\supfun{\nu}\rsupfun{\nu}@\{y\}\sqsubseteq\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\}$.
So $\nu\circ f|_{\rsupfun{\mu}@\{x\}}=\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\}$.
$\xlim_{x}f=\setcond{\nu\circ f|_{\rsupfun{\mu}@\{x\}}\circ\uparrow r}{r\in G}=\setcond{(\rsupfun{\mu}@\{x\}\times^{\mathsf{FCD}}\rsupfun{\nu}@\{y\})\circ\uparrow r}{r\in G}=\tau(y)$.\end{proof}
\begin{cor}
If $\lim_{\rsupfun{\mu}@\{x\}}^{\nu}f=y$ then $\xlim_{x}f=\tau(y)$ (provided that $\nu\sqsubseteq\nu\circ\nu$).
\end{cor}
We have injective $\tau$ if $\rsupfun{\nu}@\{y_{1}\}\sqcap\rsupfun{\nu}@\{y_{2}\}=\bot^{\mathscr{F}(\Ob\mu)}$
for every distinct $y_{1},y_{2}\in\Ob\nu$ that is if $\nu$ is $T_{2}$-separable.
\section{Expressing limits as implications}
When you studied limits in the school, you was told that
$\lim_{x\to\alpha} f(x) = \beta$ when $x\to\alpha$ implies
$f(x) \to \beta$. Now let us formalize this.
\begin{prop}
The following are pairwise equivalent for funcoids $\mu$, $\nu$, $f$ of
suitable (``compatible'') sources and destinations:
\begin{enumerate}
\item\label{implim-one} $f|_{\langle \mu \rangle^{\ast} \{ \alpha \}}
\overset{\nu}{\rightarrow} \beta$;
\item\label{implim-f} $\forall x \in \mathscr{F} (\Ob \mu) : \left( x
\overset{\mu}{\rightarrow} \alpha \Rightarrow \supfun{f} x
\overset{\nu}{\rightarrow} \beta \right)$;
\item\label{implim-a} $\forall x \in \atoms^{\mathscr{F} (\Ob \mu)} : \left( x
\overset{\mu}{\rightarrow} \alpha \Rightarrow \supfun{f} x
\overset{\nu}{\rightarrow} \beta \right)$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item[\ref{implim-one}$\Leftrightarrow$\ref{implim-f}]
\begin{multline*}
\forall x \in \mathscr{F} (\Ob \mu) :
\left( x \overset{\mu}{\rightarrow} \alpha \Rightarrow \supfun{f} x
\overset{\nu}{\rightarrow} \beta \right) \Leftrightarrow \\ \forall x \in
\mathscr{F} (\Ob \mu) : (x \sqsubseteq \langle \mu \rangle \alpha
\Rightarrow \\ \supfun{f} x \sqsubseteq \supfun{\nu} \beta)
\Leftrightarrow \supfun{f} \langle \mu \rangle \alpha \sqsubseteq
\supfun{\nu} \beta \Leftrightarrow f|_{\langle \mu \rangle^{\ast}
\{ \alpha \}} \overset{\nu}{\rightarrow} \beta.
\end{multline*}
\item[\ref{implim-f}$\Rightarrow$\ref{implim-a}] Obvious.
\item[\ref{implim-a}$\Rightarrow$\ref{implim-f}] Let \ref{implim-a} hold. Then for $x \in \mathscr{F}
(\Ob \mu)$ we have $x \overset{\mu}{\rightarrow} \alpha
\Leftrightarrow x \sqsubseteq \langle \mu \rangle \alpha \Leftrightarrow
\forall x' \in \atoms x : x' \sqsubseteq \langle \mu \rangle \alpha
\Leftrightarrow \forall x' \in \atoms x : x'
\overset{\mu}{\rightarrow} \alpha \Rightarrow \forall x' \in \atoms
x : \supfun{f} x' \overset{\nu}{\rightarrow} \beta \Leftrightarrow
\forall x' \in \atoms x : \left\langle f \right\rangle x'
\sqsubseteq \supfun{\nu} \beta \Leftrightarrow \bigsqcup_{x' \in
\atoms x} \supfun{f} x' \sqsubseteq \supfun{\nu} \beta
\Leftrightarrow \supfun{f} x \sqsubseteq \supfun{\nu} \beta
\Leftrightarrow \supfun{f} x \overset{\nu}{\rightarrow} \beta$.
\end{description}
\end{proof}
\begin{lem}
If $f$ is an enterely defined monovalued funcoid and $x$ is an ultrafilter,
$y$ is a filter, then $\supfun{f} x \sqsubseteq y \Leftrightarrow x
\sqsubseteq \langle f^{- 1} \rangle y$.
\end{lem}
\begin{proof}
$\supfun{f} x$ is an ultrafilter. $\supfun{f} x \sqsubseteq y
\Leftrightarrow \supfun{f} x \nasymp y \Leftrightarrow x \nasymp
\langle f^{- 1} \rangle y \Leftrightarrow x \sqsubseteq \langle f^{- 1}
\rangle y$.
\end{proof}
\begin{prop}
The following are pairwise equivalent for funcoids $\mu$, $\nu$, $f$, $g$ of
suitable (``compatible'') sources and destinations provided that $g$ is
entirely defined and monovalued:
\begin{enumerate}
\item\label{limback-one} $(f \circ g^{- 1}) |_{\langle \mu \rangle^{\ast} \{ \alpha \}}
\overset{\nu}{\rightarrow} \beta$;
\item\label{limback-f} $\forall x \in \mathscr{F} (\Ob \mu) : \left( \langle g
\rangle x \overset{\mu}{\rightarrow} \alpha \Rightarrow \supfun{f}
x \overset{\nu}{\rightarrow} \beta \right)$;
\item\label{limback-a} $\forall x \in \atoms^{\mathscr{F} (\Ob \mu)} : \left(
\supfun{g} x \overset{\mu}{\rightarrow} \alpha \Rightarrow \langle
f \rangle x \overset{\nu}{\rightarrow} \beta \right)$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item[\ref{limback-one}$\Leftrightarrow$\ref{limback-a}] Equivalently transforming: $(f \circ g^{- 1})
|_{\langle \mu \rangle^{\ast} \{ \alpha \}} \overset{\nu}{\rightarrow}
\beta$; $\supfun{f} \langle g^{- 1} \rangle^{\ast} \langle \mu
\rangle^{\ast} \{ \alpha \} \sqsubseteq \supfun{\nu}^{\ast} \{
\beta \}$; for every $x \in \atoms^{\mathscr{F} (\Ob \mu)}$ we
have $x \sqsubseteq \langle g^{- 1} \rangle \langle \mu \rangle^{\ast} \{
\alpha \} \Rightarrow \supfun{f} x \sqsubseteq \langle \nu
\rangle^{\ast} \{ \beta \}$; what by the lemma is equivalent to $\langle g
\rangle x \sqsubseteq \langle \mu \rangle^{\ast} \{ \alpha \} \Rightarrow
\supfun{f} x \sqsubseteq \supfun{\nu}^{\ast} \{ \beta \}$
that is $\supfun{g} x \overset{\mu}{\rightarrow} \alpha \Rightarrow
\supfun{f} x \overset{\nu}{\rightarrow} \beta$.
\item[\ref{limback-a}$\Leftrightarrow$\ref{limback-f}] Let $x \in \mathscr{F} (\Ob \mu)$ and~\ref{limback-a}
holds. Let $\supfun{g} x \overset{\mu}{\rightarrow} \alpha$. Then
$\forall x' \in \atoms x : \supfun{g} x'
\overset{\mu}{\rightarrow} \alpha$ and thus $\supfun{f} x'
\overset{\nu}{\rightarrow} \beta$ that is $\supfun{f} x'
\sqsubseteq \supfun{\nu} \beta$. $\supfun{f} x =
\bigsqcup_{x' \in \atoms x} \supfun{f} x' \sqsubseteq \langle
\nu \rangle \beta$ that is $\supfun{f} x \overset{\nu}{\rightarrow}
\beta$.
\end{description}
\end{proof}
\begin{problem}
Can the theorem be strenhtened for: a. non-monovalued; b. not entirely defined $g$?
(The problem seems easy but I have not checked it.)
\end{problem}