-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-connected.tex
495 lines (448 loc) · 20.2 KB
/
chap-connected.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
\chapter{Connectedness regarding funcoids and reloids}
\section{Some lemmas}
\begin{lem}
Let $U$ be a set, $A,B\in\mathscr{T}U$ be typed sets, $f$ be an
endo-funcoid on $U$. If $\neg(A\rsuprel fB)\wedge A\sqcup B\in\up(\dom f\sqcup\im f)$
then $f$ is closed on $A$.\end{lem}
\begin{proof}
Let $A\sqcup B\in\up(\dom f\sqcup\im f)$.
\begin{align*}
\lnot(A\rsuprel fB) & \Leftrightarrow\\
B\sqcap\rsupfun fA=\bot & \Rightarrow\\
(\dom f\sqcup\im f)\sqcap B\sqcap\rsupfun fA=\bot & \Rightarrow\\
((\dom f\sqcup\im f)\setminus A)\sqcap\rsupfun fA=\bot & \Leftrightarrow\\
\rsupfun fA\sqsubseteq A.
\end{align*}
\end{proof}
\begin{cor}
If $\neg(A\rsuprel fB)\wedge A\sqcup B\in\up(\dom f\sqcup\im f)$ then
$f$ is closed on $A\setminus B$ for a funcoid $f\in\mathsf{FCD}(U,U)$
for every sets $U$ and typed sets $A,B\in\mathscr{T}U$.\end{cor}
\begin{proof}
Let $\neg(A\rsuprel fB)\wedge A\sqcup B\in\up(\dom f\sqcup\im f)$. Then
\[
\lnot((A\setminus B)\rsuprel fB)\land(A\setminus B)\sqcup B\in\up(\dom f\sqcup\im f).
\]
\end{proof}
\begin{lem}
If $\neg(A\rsuprel fB)\wedge A\sqcup B\in\up(\dom f\sqcup\im f)$ then
$\lnot(A\rsuprel{f^{n}}B)$ for every whole positive $n$.\end{lem}
\begin{proof}
Let $\neg(A\rsuprel fB)\wedge A\sqcup B\in\up(\dom f\sqcup\im f)$. From
the above lemma $\rsupfun fA\sqsubseteq A$. $B\sqcap\supfun fA=\bot$,
consequently $\rsupfun fA\sqsubseteq A\setminus B$. Because (by the
above corollary) $f$ is closed on $A\setminus B$, then $\supfun f\supfun fA\sqsubseteq A\setminus B$,
$\supfun f\supfun f\supfun fA\sqsubseteq A\setminus B$, etc. So $\supfun{f^{n}}A\sqsubseteq A\setminus B$,
$B\asymp\supfun{f^{n}}A$, $\lnot(A\rsuprel{f^{n}}B)$.
\end{proof}
\section{Endomorphism series}
\begin{defn}
$S_{1}(\mu)=\mu\sqcup\mu^{2}\sqcup\mu^{3}\sqcup\ldots$ for an endomorphism
$\mu$ of a precategory with countable join of morphisms (that is
join defined for every countable set of morphisms).
\end{defn}
\begin{defn}
\index{endomorphism series}$S(\mu)=\mu^{0}\sqcup S_{1}(\mu)=\mu^{0}\sqcup\mu\sqcup\mu^{2}\sqcup\mu^{3}\sqcup\ldots$where
$\mu^{0}=1_{\Ob\mu}$ (identity morphism for the object $\Ob\mu$)
where $\Ob\mu$ is the object of endomorphism $\mu$ for an endomorphism
$\mu$ of a category with countable join of morphisms.
\end{defn}
I call $S_{1}$ and $S$ \emph{endomorphism series}.
\begin{prop}
The relation $S(\mu)$ is transitive for the category~$\mathbf{Rel}$.\end{prop}
\begin{proof}
~
\begin{multline*}
S(\mu)\circ S(\mu)=\mu^{0}\sqcup S(\mu)\sqcup\mu\circ S(\mu)\sqcup\mu^{2}\circ S(\mu)\sqcup\dots=\\
(\mu^{0}\sqcup\mu^{1}\sqcup\mu^{2}\sqcup\dots)\sqcup(\mu^{1}\sqcup\mu^{2}\sqcup\mu^{3}\sqcup\dots)\sqcup(\mu^{2}\sqcup\mu^{3}\sqcup\mu^{4}\sqcup\dots)=\\
\mu^{0}\sqcup\mu^{1}\sqcup\mu^{2}\sqcup\dots=S(\mu).
\end{multline*}
\end{proof}
\section{Connectedness regarding binary relations}
Before going to research connectedness for funcoids and reloids we
will excurse into the basic special case of connectedness regarding
binary relations on a set~$\mho$.
This is commonly studied in ``graph theory'' courses. \emph{Digraph}
as commonly defined is essentially the same as an endomorphism of
the category~$\mathbf{Rel}$.
\begin{defn}
\index{connectedness!regarding binary relation}A set~$A$ is called
\emph{(strongly) connected} regarding a binary relation~$\mu$ on~$U$
when
\[
\forall X,Y\in\subsets U\setminus\{\emptyset\}:(X\cup Y=A\Rightarrow X\rsuprel{\mu}Y).
\]
\end{defn}
\begin{defn}
\index{connectedness!regarding mathbf{Rel}
-endomorphism@regarding $\mathbf{Rel}$-endomorphism}A typed set~$A$ of type~$U$ is called \emph{(strongly) connected}
regarding a $\mathbf{Rel}$-endomorphism~$\mu$ on~$U$ when
\[
\forall X,Y\in\mathscr{T}(\Ob\mu)\setminus\{\bot^{\mathscr{T}(\Ob\mu)}\}:(X\sqcup Y=A\Rightarrow X\rsuprel{\mu}Y).
\]
\end{defn}
\begin{obvious}
A typed set~$A$ is connected regarding $\mathbf{Rel}$-endomorphism~$\mu$
on its type iff $\GR A$ is connected regarding $\GR\mu$.
\end{obvious}
Let $\mho$ be a set.
\begin{defn}
\index{path}\emph{Path} between two elements $a,b\in\mho$ in a set
$A\subseteq\mho$ through binary relation $\mu$ is the finite sequence
$x_{0}\ldots x_{n}$ where $x_{0}=a$, $x_{n}=b$ for $n\in\mathbb{N}$
and $x_{i}\mathrel{(\mu\cap A\times A)}x_{i+1}$ for every $i=0,\ldots,n-1$.
$n$ is called path \emph{length}.\end{defn}
\begin{prop}
There exists path between every element $a\in\mho$ and that element
itself.\end{prop}
\begin{proof}
It is the path consisting of one vertex (of length $0$).\end{proof}
\begin{prop}
There is a path from element $a$ to element $b$ in a set $A$ through
a binary relation $\mu$ iff $a\mathrel{(S(\mu\cap A\times A))}b$
(that is $(a,b)\in S(\mu\cap A\times A)$).\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] If a path from $a$ to $b$ exists, then $\{b\}\subseteq\rsupfun{(\mu\cap A\times A)^{n}}\{a\}$
where $n$ is the path length. Consequently $\{b\}\subseteq\rsupfun{S(\mu\cap A\times A)}\{a\}$;
$a\mathrel{(S(\mu\cap A\times A))}b$.
\item [{$\Leftarrow$}] If $a\mathrel{(S(\mu\cap A\times A))}b$ then there
exists $n\in\mathbb{N}$ such that $a\mathrel{(\mu\cap A\times A)^{n}}b$.
By definition of composition of binary relations this means that there
exist finite sequence $x_{0}\ldots x_{n}$ where $x_{0}=a$, $x_{n}=b$
for $n\in\mathbb{}{N}$ and $x_{i}\mathrel{(\mu\cap A\times A)}x_{i+1}$
for every $i=0,\ldots,n-1$. That is there is a path from $a$ to
$b$.
\end{description}
\end{proof}
\begin{prop}
There is a path from element $a$ to element $b$ in a set $A$ through
a binary relation $\mu$ iff $a\mathrel{(S_1(\mu\cap A\times A))}b$
(that is $(a,b)\in S_1(\mu\cap A\times A)$).\end{prop}
\begin{proof}
Similar to the previous proof.
\end{proof}
\begin{thm}
The following statements are equivalent for a binary relation $\mu$
and a set $A$:
\begin{enumerate}
\item \label{rconn-path}For every $a,b\in A$ there is
a nonzero-length path between $a$ and $b$ in $A$ through $\mu$.
\item \label{rconn-ge}$S_1(\mu\cap(A\times A))\supseteq A\times A$.
\item \label{rconn-eq}$S_1(\mu\cap(A\times A))=A\times A$.
\item \label{rconn-conn}$A$ is connected regarding $\mu$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item [{\ref{rconn-path}$\Rightarrow$\ref{rconn-ge}}] Let for every
$a,b\in A$ there is a nonzero-length path between $a$ and $b$ in $A$ through
$\mu$. Then $a\mathrel{(S_1(\mu\cap A\times A))}b$ for every $a,b\in A$.
It is possible only when $S_1(\mu\cap(A\times A))\supseteq A\times A$.
\item [{\ref{rconn-eq}$\Rightarrow$\ref{rconn-path}}] For every two
vertices $a$ and $b$ we have $a\mathrel{(S_1(\mu\cap A\times A))}b$.
So (by the previous) for every two vertices $a$ and $b$
there exists a nonzero-length path from $a$ to $b$.
\item [{\ref{rconn-eq}$\Rightarrow$\ref{rconn-conn}}] Suppose $\lnot(X\rsuprel{\mu\cap(A\times A)}Y)$
for some $X,Y\in\mathscr{P}\mho\setminus\{\emptyset\}$ such that
$X\cup Y=A$. Then by a lemma $\lnot(X\rsuprel{(\mu\cap(A\times A))^{n}}Y)$
for every $n\in\mathbb{Z}_+$. Consequently $\lnot(X\rsuprel{S_1(\mu\cap(A\times A))}Y)$.
So $S_1(\mu\cap(A\times A))\ne A\times A$.
\item [{\ref{rconn-conn}$\Rightarrow$\ref{rconn-eq}}] If $\rsupfun{S_1(\mu\cap(A\times A))}\{v\}=A$
for every vertex $v$ then $S_1(\mu\cap(A\times A))=A\times A$. Consider
the remaining case when $V\eqdef\rsupfun{S_1(\mu\cap(A\times A))}\{v\}\subset A$
for some vertex $v$. Let $W=A\setminus V$. If $\card A=1$ then
$S_1(\mu\cap(A\times A))\supseteq\id_{A}=A\times A$; otherwise $W\neq\emptyset$.
Then $V\cup W=A$ and so $V\rsuprel{\mu}W$ what is equivalent to
$V\rsuprel{\mu\cap(A\times A)}W$ that is $\rsupfun{\mu\cap(A\times A)}V\cap W\ne\emptyset$.
This is impossible because
\begin{multline*}
\rsupfun{\mu\cap(A\times A)}V=\rsupfun{\mu\cap(A\times A)}\rsupfun{S_1(\mu\cap(A\times A))}V=\\
\rsupfun{(\mu\cap(A\times A))^2\cup (\mu\cap(A\times A))^3\cup\dots\cup}V \subseteq
\rsupfun{S_1(\mu\cap(A\times A))}V=V.
\end{multline*}
\item [{\ref{rconn-ge}$\Rightarrow$\ref{rconn-eq}}] Because $S_1(\mu\cap(A\times A))\subseteq A\times A$.
\end{description}
\end{proof}
\begin{cor}
A set $A$ is connected regarding a binary relation $\mu$ iff it
is connected regarding $\mu\cap(A\times A)$.\end{cor}
\begin{defn}
\index{connected component}A \emph{connected component} of a set
$A$ regarding a binary relation $F$ is a maximal connected subset
of $A$.\end{defn}
\begin{thm}
The set $A$ is partitioned into connected components (regarding every
binary relation $F$).\end{thm}
\begin{proof}
Consider the binary relation $a\sim b\Leftrightarrow a\mathrel{(S(F))}b\wedge b\mathrel{(S(F))}a$.
$\sim$ is a symmetric, reflexive, and transitive relation. So all
points of $A$ are partitioned into a collection of sets $Q$. Obviously
each component is (strongly) connected. If a set $R\subseteq A$ is
greater than one of that connected components $A$ then it contains
a point $b\in B$ where $B$ is some other connected component. Consequently
$R$ is disconnected.\end{proof}
\begin{prop}
A set is connected (regarding a binary relation) iff it has one connected
component.\end{prop}
\begin{proof}
Direct implication is obvious. Reverse is proved by contradiction.
\end{proof}
\section{Connectedness regarding funcoids and reloids}
\begin{defn}
\index{connectivity reloid}\emph{Connectivity reloid} $S_{1}^{\ast}(\mu)=\bigsqcap_{M\in\up\mu}^{\mathsf{RLD}}S_{1}(M)$
for an endoreloid~$\mu$.
\end{defn}
\begin{defn}
$S^{\ast}(\mu)$
for an endoreloid $\mu$ is defined as follows:
\[
S^{\ast}(\mu)=\bigsqcap_{M\in\up\mu}^{\mathsf{RLD}}S(M).
\]
\end{defn}
Do not mess the word \emph{connectivity} with the word \emph{connectedness}
which means being connected.\footnote{In some math literature these two words are used interchangeably.}
\begin{prop}
$S^{\ast}(\mu)=1_{\Ob\mu}^{\mathsf{RLD}}\sqcup S_{1}^{\ast}(\mu)$
for every endoreloid $\mu$.\end{prop}
\begin{proof}
By the proposition \ref{b-f-back-distr}.\end{proof}
\begin{prop}
$S^{\ast}(\mu)=S(\mu)$ and $S^{\ast}_1(\mu)=S_1(\mu)$ if $\mu$ is a principal reloid.\end{prop}
\begin{proof}
$S^{\ast}(\mu)=\bigsqcap\{S(\mu)\}=S(\mu)$;
$S^{\ast}_1(\mu)=\bigsqcap\{S_1(\mu)\}=S_1(\mu)$.
\end{proof}
\begin{defn}
\index{connected!regarding endoreloid}A filter $\mathcal{A}\in\mathscr{F}(\Ob\mu)$
is called \emph{connected} regarding an endoreloid $\mu$ when $S^{\ast}_1(\mu\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{A}))\sqsupseteq\mathcal{A}\times^{\mathsf{RLD}}\mathcal{A}$.\end{defn}
\begin{obvious}
A filter $\mathcal{A}\in\mathscr{F}(\Ob\mu)$ is connected regarding
an endoreloid $\mu$ iff $S^{\ast}_1(\mu\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{A}))=\mathcal{A}\times^{\mathsf{RLD}}\mathcal{A}$.\end{obvious}
\begin{defn}
\index{connected!regarding endofuncoid}A filter $\mathcal{A}\in\mathscr{F}(\Ob\mu)$
is called \emph{connected} regarding an endofuncoid $\mu$ when
\[
\forall\mathcal{X},\mathcal{Y}\in\mathscr{F}(\Ob\mu)\setminus\{\bot^{\mathscr{F}(\Ob\mu)}\}:(\mathcal{X}\sqcup\mathcal{Y}=\mathcal{A}\Rightarrow\mathcal{X}\suprel{\mu}\mathcal{Y}).
\]
\end{defn}
\begin{prop}
Let $A$ be a typed set of type~$U$. The filter $\uparrow A$ is
connected regarding an endofuncoid $\mu$ on~$U$ iff
\[
\forall X,Y\in\mathscr{T}(\Ob\mu)\setminus\{\bot^{\mathscr{T}(\Ob\mu)}\}:(X\sqcup Y=A\Rightarrow X\rsuprel{\mu}Y).
\]
\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] Obvious.
\item [{$\Leftarrow$}] It follows from co-separability of filters.
\end{description}
\end{proof}
\begin{thm}
The following are equivalent for every typed set $A$ of type~$U$
and $\mathbf{Rel}$-endomorphism~$\mu$ on a set $U$:
\begin{enumerate}
\item \label{princ-conn-rel}$A$ is connected regarding~$\mu$.
\item \label{princ-conn-rld}$\uparrow A$ is connected regarding $\uparrow^{\mathsf{RLD}}\mu$.
\item \label{princ-conn-fcd}$\uparrow A$ is connected regarding $\uparrow^{\mathsf{FCD}}\mu$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item [{\ref{princ-conn-rel}$\Leftrightarrow$\ref{princ-conn-rld}}] ~
\begin{align*}
S^{\ast}_1(\uparrow^{\mathsf{RLD}}\mu\sqcap(A\times^{\mathsf{RLD}}A)) & =\\
S^{\ast}_1(\uparrow^{\mathsf{RLD}}(\mu\sqcap(A\times A))) & =\\
\uparrow^{\mathsf{RLD}}S_1(\mu\sqcap(A\times A)).
\end{align*}
So
\begin{align*}
S^{\ast}_1(\uparrow^{\mathsf{RLD}}\mu\sqcap(A\times^{\mathsf{RLD}}A))\sqsupseteq A\times^{\mathsf{RLD}}A & \Leftrightarrow\\
\uparrow^{\mathsf{RLD}}S_1(\mu\sqcap(A\times A))\sqsupseteq\uparrow^{\mathsf{RLD}}(A\times A)=A\times^{\mathsf{RLD}}A.
\end{align*}
\item [{\ref{princ-conn-rel}$\Leftrightarrow$\ref{princ-conn-fcd}}] It
follows from the previous proposition.
\end{description}
\end{proof}
Next is conjectured a statement more strong than the above theorem:
\begin{conjecture}
Let $\mathcal{A}$ be a filter on a set $U$ and $F$ be a $\mathbf{Rel}$-endomorphism
on $U$.
$\mathcal{A}$ is connected regarding $\uparrow^{\mathsf{FCD}}F$
iff $\mathcal{A}$ is connected regarding $\uparrow^{\mathsf{RLD}}F$.\end{conjecture}
\begin{obvious}
A filter $\mathcal{A}$ is connected regarding a reloid $\mu$ iff
it is connected regarding the reloid $\mu\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{A})$.
\end{obvious}
\begin{obvious}
A filter $\mathcal{A}$ is connected regarding a funcoid $\mu$ iff
it is connected regarding the funcoid $\mu\sqcap(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{A})$.\end{obvious}
\begin{thm}
A filter $\mathcal{A}$ is connected regarding a reloid $f$ iff $\mathcal{A}$
is connected regarding every $F\in\rsupfun{\uparrow^{\mathsf{RLD}}}\up f$.\end{thm}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] Obvious.
\item [{$\Leftarrow$}] $\mathcal{A}$ is connected regarding $\uparrow^{\mathsf{RLD}}F$
iff $S_1(F)=F^{1}\sqcup F^{2}\sqcup\dots\in\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{A})$.
$S^{\ast}_1(f)=\bigsqcap_{F\in\up f}^{\mathsf{RLD}}S_1(F)\sqsupseteq\bigsqcap_{F\in\up f}(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{A})=\mathcal{A}\times^{\mathsf{RLD}}\mathcal{A}$.
\end{description}
\end{proof}
\begin{conjecture}
A filter $\mathcal{A}$ is connected regarding a funcoid $f$ iff
$\mathcal{A}$ is connected regarding every $F\in\rsupfun{\uparrow^{\mathsf{FCD}}}\up f$.
\end{conjecture}
The above conjecture is open even for the case when $\mathcal{A}$
is a principal filter.
\begin{conjecture}
A filter $\mathcal{A}$ is connected regarding a reloid $f$ iff it
is connected regarding the funcoid $\tofcd f$.
\end{conjecture}
The above conjecture is true in the special case of principal filters:
\begin{prop}
A filter $\uparrow A$ (for a typed set $A$) is connected regarding
an endoreloid $f$ on the suitable object iff it is connected regarding the endofuncoid $\tofcd f$.\end{prop}
\begin{proof}
$\uparrow A$ is connected regarding a reloid $f$ iff $A$
is connected regarding every $F\in\up f$ that is when (taken into
account that connectedness for $\uparrow^{\mathsf{RLD}}F$ is the
same as connectedness of $\uparrow^{\mathsf{FCD}}F$)
\begin{align*}
\forall F\in\up f\forall\mathcal{X},\mathcal{Y}\in\mathscr{F}(\Ob f)\setminus\{\bot^{\mathscr{F}(\Ob f)}\}:(\mathcal{X}\sqcup\mathcal{Y}=\uparrow A\Rightarrow\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y}) & \Leftrightarrow\\
\forall\mathcal{X},\mathcal{Y}\in\mathscr{F}(\Ob f)\setminus\{\bot^{\mathscr{F}(\Ob f)}\}\forall F\in\up f:(\mathcal{X}\sqcup\mathcal{Y}=\uparrow A\Rightarrow\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y}) & \Leftrightarrow\\
\forall\mathcal{X},\mathcal{Y}\in\mathscr{F}(\Ob f)\setminus\{\bot^{\mathscr{F}(\Ob f)}\}(\mathcal{X}\sqcup\mathcal{Y}=\uparrow A\Rightarrow\forall F\in\up f:\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y}) & \Leftrightarrow\\
\forall\mathcal{X},\mathcal{Y}\in\mathscr{F}(\Ob f)\setminus\{\bot^{\mathscr{F}(\Ob f)}\}(\mathcal{X}\sqcup\mathcal{Y}=\uparrow A\Rightarrow\mathcal{X}\suprel{\tofcd f}\mathcal{Y})
\end{align*}
that is when the set $\uparrow A$ is connected regarding
the funcoid $\tofcd f$.\end{proof}
\begin{conjecture}
A set $A$ is connected regarding an endofuncoid $\mu$ iff for every
$a,b\in A$ there exists a totally ordered set $P\subseteq A$ such
that $\min P=a$, $\max P=b$ and
\[
\forall q\in P\setminus\{b\}:\setcond{x\in P}{x\le q}\rsuprel{\mu}\setcond{x\in P}{x>q}.
\]
Weaker condition:
\[
\forall q\in P\setminus\{b\}:\setcond{x\in P}{x\le q}\rsuprel{\mu}\setcond{x\in P}{x>q}\lor\forall q\in P\setminus\{a\}:\setcond{x\in P}{x<q}\rsuprel{\mu}\setcond{x\in P}{x\ge q}.
\]
\end{conjecture}
\section{\texorpdfstring{Algebraic properties of $S$ and $S^{\ast}$}%
{Algebraic properties of S and S*}}
\begin{thm}
$S^{\ast}(S^{\ast}(f))=S^{\ast}(f)$ for every endoreloid $f$.\end{thm}
\begin{proof}
~
\begin{multline*}
S^{\ast}(S^{\ast}(f)) =
\bigsqcap_{R\in\up S^{\ast}(f)}^{\mathsf{RLD}}S(R) \sqsubseteq \\
\bigsqcap_{R\in\setcond{S(F)}{F\in\up f}}^{\mathsf{RLD}}S(R) =
\bigsqcap_{R\in\up f}^{\mathsf{RLD}}S(S(R)) =
\bigsqcap_{R\in\up f}^{\mathsf{RLD}}S(R) =
S^{\ast}(f).
\end{multline*}
So $S^{\ast}(S^{\ast}(f))\sqsubseteq S^{\ast}(f)$. That $S^{\ast}(S^{\ast}(f))\sqsupseteq S^{\ast}(f)$
is obvious.\end{proof}
\begin{cor}
$S^{\ast}(S(f))=S(S^{\ast}(f))=S^{\ast}(f)$ for every endoreloid
$f$.\end{cor}
\begin{proof}
Obviously $S^{\ast}(S(f))\sqsupseteq S^{\ast}(f)$ and $S(S^{\ast}(f))\sqsupseteq S^{\ast}(f)$.
But $S^{\ast}(S(f))\sqsubseteq S^{\ast}(S^{\ast}(f))=S^{\ast}(f)$
and $S(S^{\ast}(f))\sqsubseteq S^{\ast}(S^{\ast}(f))=S^{\ast}(f)$.\end{proof}
\begin{conjecture}
$S(S(f))=S(f)$ for
\begin{enumerate}
\item every endoreloid $f$;
\item every endofuncoid $f$.
\end{enumerate}
\end{conjecture}
\begin{conjecture}
$S(f)\circ S(f)=S(f)$ for every endoreloid $f$.
\end{conjecture}
\begin{thm}
$S^{\ast}(f)\circ S^{\ast}(f) = S(f)\circ S^{\ast}(f)=S^{\ast}(f)\circ S(f)=S^{\ast}(f)$ for every endoreloid $f$.
\end{thm}
\begin{proof}
\footnote{Can be more succintly proved considering $\mu \mapsto S^{\ast} (\mu)$ as a
pointfree funcoid?}
It is enough to prove $S^{\ast}(f)\circ S^{\ast}(f) = S^{\ast}(f)$ because
$S^{\ast}(f) \sqsubseteq S(f)\circ S^{\ast}(f) \sqsubseteq S^{\ast}(f)\circ S^{\ast}(f)$ and likewise for $S^{\ast}(f)\circ S(f)$.
\begin{multline*}
S^{\ast} (\mu) \circ S^{\ast} (\mu) = \bigsqcap^{\mathsf{RLD}}_{F
\in \up S^{\ast} (\mu)} (F \circ F) = \text{(see below)} = \\
\bigsqcap^{\mathsf{RLD}}_{X \in \up \mu} (S (X) \circ S (X)) =
\bigsqcap^{\mathsf{RLD}}_{X \in \up \mu} S (X) = S^{\ast}
(\mu).
\end{multline*}
\begin{multline*}
F \in \up S^{\ast} (\mu)
\Leftrightarrow
F \in \up \bigsqcap^{\mathscr{F}}_{F\in\up\mu} S(F)
\Rightarrow \\
\text{(by properties of filter bases)}
\Rightarrow \exists X \in \up \mu : F
\sqsupseteq S (X)
\Rightarrow \\ \exists X \in \up \mu : F \circ F
\sqsupseteq S (X) \circ S (X)
\end{multline*}
thus
\[ \bigsqcap^{\mathsf{RLD}}_{
F \in \up S^{\ast} (\mu) } F \circ F \sqsupseteq
\bigsqcap^{\mathsf{RLD}}_{ X \in \up \mu } (S (X) \circ S (X)) ; \]
$X \in \up \mu \Rightarrow S (X) \in \up S^{\ast} (\mu)
\Rightarrow \exists F \in \up S^{\ast} (\mu) : S (X) \circ S (X)
\sqsupseteq F \circ F$ thus
\[ \bigsqcap^{\mathsf{RLD}}_{
F \in \up S^{\ast} (\mu) } F \circ F \sqsubseteq
\bigsqcap^{\mathsf{RLD}}_{ X \in \up \mu } (S (X) \circ S (X)) . \]
\end{proof}
\begin{conjecture}
$S(f)\circ S(f)=S(f)$ for every endofuncoid $f$.\end{conjecture}
\section{Irreflexive reloids}
\begin{defn}
Endoreloid~$f$ is irreflexive iff $f\asymp 1^{\Ob f}$.
\end{defn}
\begin{prop}
Endoreloid~$f$ is irreflexive iff $f\sqsubseteq \top\setminus 1$.
\end{prop}
\begin{proof}
By theorem \ref{f-intrs-and-compl}.
\end{proof}
\begin{obvious}
$f \setminus 1$ is an irreflexive endoreloid if $f$ is an endoreloid.
\end{obvious}
\begin{prop}
$S (f) = S (f \sqcup 1)$ if~$f$ is an endoreloid,
endofuncoid, or endorelation.
\end{prop}
\begin{proof}
First prove $(f \sqcup 1)^n = 1 \sqcup f \sqcup \ldots \sqcup f^n$ for $n \in
\mathbb{N}$. For $n = 0$ it's obvious. By induction we have
\begin{align*}
(f\sqcup 1)^{n+1} &= \\
(f\sqcup 1)^n\circ(f\sqcup 1) &= \\
(1\sqcup f\sqcup\dots\sqcup f^n)\circ(f\sqcup 1) &= \\
(f\sqcup f^2\sqcup\dots\sqcup f^{n+1}) \sqcup (1\sqcup f\sqcup\dots\sqcup f^n) &= \\
1\sqcup f\sqcup\dots\sqcup f^{n+1}.
\end{align*}
So $S (f \sqcup 1) = 1 \sqcup (1 \sqcup f) \sqcup (1 \sqcup f \sqcup f^2) \sqcup
\ldots = 1 \sqcup f \sqcup f^2 \sqcup \ldots = S (f)$.
\end{proof}
\begin{cor}
$S (f) = S (f \sqcup 1) = S (f \setminus 1)$ if~$f$ is an endoreloid
(or just an endorelation).
\end{cor}
\begin{proof}
$S (f \setminus 1) = S ((f \setminus 1) \sqcup 1) \sqsupseteq S (f)$. But $S
(f \setminus 1) \sqsubseteq S (f)$ is obvious. So $S (f \setminus 1) = S (f)$.
\end{proof}
\section{Micronization}
``Micronization'' was a thoroughly wrong idea with several errors in
the proofs. This section is removed from the book.