-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathPCE-Saha-LHC.cpp
182 lines (153 loc) · 6.67 KB
/
PCE-Saha-LHC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
* Thermal-FIST package
*
* Copyright (c) 2014-2020 Volodymyr Vovchenko
*
* GNU General Public License (GPLv3 or later)
*/
#include <string.h>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <ctime>
#include <cstdio>
#include "HRGBase.h"
#include "HRGEV.h"
#include "HRGFit.h"
#include "HRGVDW.h"
#include "HRGPCE.h"
#include "ThermalFISTConfig.h"
using namespace std;
#ifdef ThermalFIST_USENAMESPACE
using namespace thermalfist;
#endif
// This is an example of doing PCE-HRG model calculations at the LHC energies using Thermal-FIST
// Usage: PCE-Saha-LHC
int main(int argc, char *argv[])
{
// The default particle list. As of version 1.3 this is PDG2020 list including light nuclei
ThermalParticleSystem parts(ThermalFIST_DEFAULT_LIST_FILE);
// To include excited nuclei use the following line instead
//ThermalParticleSystem parts(string(ThermalFIST_INPUT_FOLDER) + "/list/PDG2020/list-withexcitednuclei.dat");
// To reproduce arXiv:1903.10024 use the PDG2014 list
//ThermalParticleSystem TPS(string(ThermalFIST_INPUT_FOLDER) + "/list/PDG2014/list-withnuclei.dat");
// Use ideal HRG model
ThermalModelIdeal model(&parts);
// PCE-HRG model
ThermalModelPCE modelpce(&model);
modelpce.UseSahaForNuclei(true); // Light nuclei evaluated using the Saha equation (arXiv:1903.10024)
modelpce.FreezeLonglivedResonances(false); // All strongly decaying resonance are in partial equilibrium
// Chemical freeze-out conditions: 2.76 TeV 0-10% Pb-Pb collisions
ThermalModelParameters params_chemical_freezeout;
params_chemical_freezeout.T = 0.155; // Temperature in GeV
params_chemical_freezeout.muB = 0.;
params_chemical_freezeout.V = 4700.; // Volume in fm^3
model.SetParameters(params_chemical_freezeout);
// For finite baryon density: constrain muQ and muS
model.ConstrainChemicalPotentials();
params_chemical_freezeout = model.Parameters();
model.FillChemicalPotentials(); // Fills chemical potentials for all species at Tch
// Set the chemical freeze-out as an "initial" condition for PCE
modelpce.SetChemicalFreezeout(params_chemical_freezeout);
// The list of chemical potentials for output, coded by the pdg code
vector<long long> pdgcodes_stable;
pdgcodes_stable.push_back(211); // pions (pi+)
pdgcodes_stable.push_back(321); // kaons (K+)
pdgcodes_stable.push_back(2212); // protons (p+)
pdgcodes_stable.push_back(3122); // Lambdas
pdgcodes_stable.push_back(3222); // Sigma+
pdgcodes_stable.push_back(3312); // Xi-
pdgcodes_stable.push_back(3334); // Omega
// The list of yield ratios to output
vector< pair<long long, long long> > ratios;
// First the nuclei
ratios.push_back(make_pair(1000010020, 2212)); // d/p
ratios.push_back(make_pair(1000020030, 2212)); // He3/p
ratios.push_back(make_pair(1000010030, 2212)); // H3/p
ratios.push_back(make_pair(1000020040, 2212)); // He4/p
ratios.push_back(make_pair(1010010030, 2212)); // Hypertriton/p
ratios.push_back(make_pair(1010010040, 2212)); // HyperHydrogen4/p
// Now the resonances
ratios.push_back(make_pair(313, -321)); // K^*0 / K^-
ratios.push_back(make_pair(113, 211)); // rho^0/ pi^+
ratios.push_back(make_pair(3124, 3122)); // \Lambda(1520)/\Lambda
ratios.push_back(make_pair(9010221, 211)); // f0(980) / pi^+
ratios.push_back(make_pair(2224, 2212)); // \Delta(1232)++/p
// Preparing the output files
// The file to output the parameters (volume, entropy, chemical potentials)
FILE* fout_params = fopen("PCE.LHC.Parameters.dat", "w");
fprintf(fout_params, "%15s %15s %15s ", "T[MeV]", "V/Vch", "S/Sch");
for (int i = 0; i < pdgcodes_stable.size(); ++i) {
fprintf(fout_params, "%15s ", ("mu_" + string(parts.ParticleByPDG(pdgcodes_stable[i]).Name())).c_str());
}
fprintf(fout_params, "\n");
// The file to output the yield ratios
FILE* fout_ratios = fopen("PCE.LHC.Ratios.dat", "w");
fprintf(fout_ratios, "%15s ", "T[MeV]");
for (int i = 0; i < ratios.size(); ++i) {
fprintf(fout_ratios, "%15s ", (parts.ParticleByPDG(ratios[i].first).Name() + "/" + parts.ParticleByPDG(ratios[i].second).Name()).c_str());
}
fprintf(fout_ratios, "\n");
// The temperature scan
double T0 = params_chemical_freezeout.T;
double dT = 0.001; // steps of 1 MeV
double Tmin = 0.070; // Down to 70 MeV
// Store the value of the total entropy at the chemical freeze-out
double entropy_chemical_freezeout = modelpce.ThermalModel()->EntropyDensity() * params_chemical_freezeout.V;
// Loop over temperatures
for (double T = T0; T >= Tmin - 1.e-9; T -= dT) {
printf("T = %lf MeV\n", T * 1.e3);
// Compute the PCE chemical potentials at a given temperature
modelpce.CalculatePCE(T);
// Output the parameters at the current temperature
fprintf(fout_params, "%15lf %15lf %15lf ",
T * 1.e3,
modelpce.ThermalModel()->Volume() / params_chemical_freezeout.V,
modelpce.ThermalModel()->EntropyDensity() * modelpce.ThermalModel()->Volume() / entropy_chemical_freezeout
);
for (int i = 0; i < pdgcodes_stable.size(); ++i) {
fprintf(fout_params, "%15lf ",
modelpce.ChemicalPotentials()[ parts.PdgToId(pdgcodes_stable[i]) ]
);
}
fprintf(fout_params, "\n");
// Output the yield ratios at the current temperature
fprintf(fout_ratios, "%15lf ", T * 1.e3);
for (int i = 0; i < ratios.size(); ++i) {
fprintf(fout_ratios, "%15E ",
modelpce.ThermalModel()->GetYield(ratios[i].first, Feeddown::Electromagnetic) /
modelpce.ThermalModel()->GetYield(ratios[i].second, Feeddown::Electromagnetic));
}
fprintf(fout_ratios, "\n");
}
fclose(fout_params);
fclose(fout_ratios);
return 0;
}
/**
* \example PCE-Saha-LHC.cpp
*
* An example of doing partial chemical equilibrium HRG model calculations at the LHC energies using Thermal-FIST
*
* Calculates the evolution of the non-equilibrium chemical potentials (fugacities) and various particle ratios
* in the hadronic phase of 0-10% central 2.76 TeV Pb-Pb collisions at the LHC.
*
* The calculations closely correspond to the results published in [arXiv:1903.10024](https://arxiv.org/abs/1903.10024)
*
* Calculations start at T<sub>ch</sub> = 155 MeV and go down to a specified temperature (by default down to 70 MeV in steps of 1 MeV).
* The values of the chemical potentials, as well as of the system volume relative to the volume at the freeze-out, are
* written to a file `PCE.LHC.Parameters.dat'
*
* The particle yield ratios at each temperature are written to a file `PCE.LHC.Ratios.dat'.
*
* The abundances of light nuclei are calculated using the Saha equation.
*
* The source code can be modified to obtain other particle yields, to change the particle list or
* or the HRG model type (e.g. an excluded volume HRG instead of an ideal HRG), or to explore other collision energies.
*
* Usage:
* ~~~.bash
* ./PCE-Saha-LHC
* ~~~
*
*/