-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainNN.py
108 lines (72 loc) · 3.2 KB
/
trainNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import logging
from os import listdir
from os.path import isfile, join
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D, Conv1D, Dropout, MaxPooling1D, UpSampling1D, Activation
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D, Conv1D, Dropout, MaxPooling1D, UpSampling1D, Activation
from keras.models import Model, Sequential, model_from_json
from keras import optimizers
from sklearn.model_selection import train_test_split
from numpy import array
from plotCallback import PlotLoss
import numpy as np
import time
import random
then = time.time() #Time before the operations start
import math
from math import radians, degrees
import sys
import keras as K
from itertools import islice
np.set_printoptions(suppress=True,
formatter={'float_kind':'{:0.2f}'.format})
np.random.seed(0)
version = "tq3"
fileChanged = "cmu_Euler_21j_w240x120"
print('started processing {}', fileChanged)
X = np.load(fileChanged+".npz")['clips']
print(X.shape)
X = X.reshape(X.shape[0], X.shape[1], X.shape[2]*X.shape[3])
qdata = array(X)
X = None
# split into 80% for train and 20% for test
trainingData, validationData = train_test_split(qdata, test_size=0.2)
network = Sequential()
degreesOFreedom = trainingData.shape[2] #joints * degreees of freedom
windowSize = trainingData.shape[1] #temporal window 240 frames
kernel_size = 25
dropoutAmount = 0.15
hiddenUnits = 256
activationType = 'relu'
network.add(Dropout(dropoutAmount, input_shape=(windowSize, degreesOFreedom)))
network.add(Conv1D(hiddenUnits, kernel_size, activation=activationType, use_bias=True, padding='same'))
network.add(Dropout(dropoutAmount, input_shape=(windowSize, hiddenUnits)))
network.add(Conv1D(degreesOFreedom, kernel_size, activation='linear', use_bias=True, padding='same'))
network.summary()
epochs = 600
myadam = optimizers.adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
network.compile(optimizer=myadam, loss='mse')
batch_size = 128
idPrefix = '{}_k{}_hu{}_e{}_d{}_bz{}_valtest0.2_activation{}'.format(fileChanged, kernel_size, hiddenUnits, epochs, dropoutAmount, batch_size, activationType)
plot_losses = PlotLoss(epochs, 'results/'+idPrefix)
print(trainingData.shape)
history_callback = network.fit(trainingData, trainingData, verbose=2,
epochs=epochs,
batch_size=batch_size,
callbacks=[plot_losses],
validation_data=(validationData, validationData))
print('hu{}'.format(hiddenUnits))
loss_history = history_callback.history["loss"]
val_loss_history = history_callback.history["val_loss"]
numpy_loss_history = np.array(loss_history)
np.savetxt('results/{}_lossHistory.txt'.format(idPrefix), numpy_loss_history, fmt='%f')
val_loss_history = np.array(val_loss_history)
np.savetxt('results/{}_valLossHistory.txt'.format(idPrefix), val_loss_history, fmt='%f')
network.save_weights('weights/{}_weights.h5'.format(idPrefix))
network.save('models/{}_model.h5'.format(idPrefix))
decoded_quat = array(network.predict(trainingData))
print("MSE I/O NN:")
print(np.square(np.subtract(trainingData, decoded_quat)).mean())
print("finished")
print(fileChanged)
now = time.time() #Time after it finished
print("It took: ", now-then, " seconds")