-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
167 lines (141 loc) · 5.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import math
import torch
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import tqdm
import config
from model import Discriminator, Generator
from utils import (
gradient_penalty,
plot_to_tensorboard,
save_checkpoint,
load_checkpoint,
generate_examples,
)
torch.backends.cudnn.benchmarks = True
def get_loaders(img_size):
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor(),
transforms.RandomHorizontalFlip(p=0.5),
transforms.Normalize(
[0.5 for _ in range(config.IMG_CHANNELS)],
[0.5 for _ in range(config.IMG_CHANNELS)],
)
])
batch_size = config.BATCH_SIZES[int(math.log2(img_size / 4))]
dataset = datasets.ImageFolder(root=config.DATASET, transform=transform)
loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=config.NUM_WORKERS
)
return loader, dataset
def train_fn(
critic,
gen,
dataloader,
dataset,
step,
alpha,
opt_critic,
opt_gen,
tensorboard_step,
writer,
scaler_gen,
scaler_critic,
):
tk = tqdm(dataloader)
for batch_idx, (real, _) in enumerate(tk):
real = real.to(config.DEVICE)
curr_batch_size = real.shape[0]
# Train critic ==> max { E[critic(real)] - E[critic(fake)] } <-> min -{ E[critic(real)] - E[critic(fake)] }
noise = torch.randn(curr_batch_size, config.Z_DIM, 1, 1).to(config.DEVICE)
with torch.cuda.amp.autocast():
fake = gen(noise, alpha, step)
critic_real = critic(real, alpha, step)
critic_fake = critic(fake.detach(), alpha, step)
gp = gradient_penalty(critic, real, fake, alpha, step, device=config.DEVICE)
loss_critic = (
- (torch.mean(critic_real) - torch.mean(critic_fake))
+ config.LAMBDA_GP * gp
+ (0.001 * torch.mean(critic_real ** 2))
)
opt_critic.zero_grad()
scaler_critic.scale(loss_critic).backward()
scaler_critic.step(opt_critic)
scaler_critic.update()
# Train Generator ==> max { E[critic(gen_fake)] } <-> min -{ E[critic(gen_fake)] }
with torch.cuda.amp.autocast():
gen_fake = critic(fake, alpha, step)
loss_gen = - torch.mean(gen_fake)
opt_gen.zero_grad()
scaler_gen.scale(loss_gen).backward()
scaler_gen.step(opt_gen)
scaler_gen.update()
# Update alpha and ensure less than 1
alpha += curr_batch_size / ((config.PROGRESSIVE_EPOCHS[step] * 0.5) * len(dataset))
alpha = min(alpha, 1)
if batch_idx % 500 == 0:
with torch.no_grad():
fixed_fakes = gen(config.FIXED_NOISE, alpha, step) * 0.5 + 0.5
plot_to_tensorboard(
writer,
loss_critic.item(),
loss_gen.item(),
real.detach(),
fixed_fakes.detach(),
tensorboard_step,
)
tensorboard_step += 1
tk.set_postfix(gp=gp.item(), loss_critic=loss_critic.item())
return tensorboard_step, alpha
def main():
gen = Generator(
config.Z_DIM, config.IN_CHANNELS, img_channels=config.IMG_CHANNELS).to(config.DEVICE)
critic = Discriminator(
config.IN_CHANNELS, img_channels=config.IMG_CHANNELS).to(config.DEVICE)
# initialize optimizers and scalers for FP16 training
opt_gen = optim.Adam(gen.parameters(), lr=config.LEARNING_RATE, betas=(0.0, 0.99))
opt_critic = optim.Adam(critic.parameters(), lr=config.LEARNING_RATE, betas=(0.0, 0.99))
scaler_critic = torch.cuda.amp.GradScaler()
scaler_gen = torch.cuda.amp.GradScaler()
# for tensorboard plotting
writer = SummaryWriter(f"logs/ProgressiveGAN")
if config.LOAD_MODEL:
load_checkpoint(config.GEN_CHECKPOINT, gen, opt_gen, config.LEARNING_RATE)
load_checkpoint(config.CRITIC_CHECKPOINT, critic, opt_critic, config.LEARNING_RATE)
gen.train()
critic.train()
tensorboard_step = 0
step = int(math.log2(config.INITIAL_IMG_SIZE / 4))
for num_epochs in config.PROGRESSIVE_EPOCHS[step:]:
alpha = 1e-5 # start with very low alpha
dataloader, dataset = get_loaders(4 * 2 ** step) # 4->0, 8->1, 16->2, ...
print(f"Current image size: {4 * 2 ** step}")
for epoch in range(num_epochs):
print(f"Epoch [{epoch + 1}/{num_epochs}]")
tensorboard_step, alpha = train_fn(
critic,
gen,
dataloader,
dataset,
step,
alpha,
opt_critic,
opt_gen,
tensorboard_step,
writer,
scaler_gen,
scaler_critic,
)
if config.SAVE_MODEL:
save_checkpoint(gen, opt_gen, filename=config.GEN_CHECKPOINT)
save_checkpoint(critic, opt_critic, filename=config.CRITIC_CHECKPOINT)
step += 1 # progress to the next img size
if __name__ == "__main__":
main()