-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofiler.py
98 lines (81 loc) · 3.06 KB
/
profiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import time
from subprocess import check_output
import matplotlib
import matplotlib.pyplot as plt
# Configuration
implementations = ['Sequential Implementation', 'MPI Implementation', 'CUDA Implementation']
build_scripts = ['sequential.sh', 'mpi.sh', 'cuda.sh']
binaries = [['./seq_noise_removal'], ['mpiexec', '-np', '5', './MPI_Executable'], ['./imageFilters.x']]
input_filename = 'mpi_in.ppm'
cuda_input_filename = 'cuda_in.ppm'
output_filename = 'output.ppm'
lower_window_size = 3
upper_window_size = 50
window_step_size = 2
# REPL
print('Loading Noise Removal Profiler')
print('Select Implementation\n 1. Sequential\n 2. MPI\n 3. CUDA\n')
implementation = [int(i)-1 for i in input().split()]
print('\nSelect Filter\n A. Mean\n B. Median\n')
filter_code = input()
print('Starting profiler with the binary')
# Build impmlementation
for i in implementation:
rc = check_output(['sh', build_scripts[i]])
print('Implementation {} built'.format(implementations[i]))
# Profile implementation
windows = [i for i in range (lower_window_size, upper_window_size, window_step_size)]
time_taken_collection = []
print('Running for window sizes {} to {} in steps of {}'.format(lower_window_size, upper_window_size, window_step_size))
for imp_code in implementation:
print('\n\nProfiling' , implementations[imp_code])
time_taken = []
for i in windows:
start = 0; end = 0
if imp_code == 2:
if filter_code == 'A':
filter_code = 'mean'
elif filter_code == 'B':
filter_code = 'median'
start = time.time()
rc = check_output([*binaries[imp_code], str(i), cuda_input_filename, output_filename, filter_code])
end = time.time()
else :
start = time.time()
rc = check_output([*binaries[imp_code], input_filename, output_filename, str(i), filter_code])
end = time.time()
print('Windown size = {}, Time = {}'.format(i, end-start))
time_taken.append(end-start)
time_taken_collection.append(time_taken)
# Plot
print('Plotting')
imp_code = implementation[0]
ax1 = plt.subplot(311)
plt.plot(windows, time_taken_collection[0])
plt.setp(ax1.get_xticklabels(), fontsize=6)
ax1.set(xlabel='Window Size', ylabel='Time Taken',
title='')
ax1.grid()
if len(implementation) >= 2:
print("Plotting 2nd subgraph")
imp_code = implementation[1]
ax2 = plt.subplot(312, sharex=ax1, sharey=ax1)
plt.plot(windows, time_taken_collection[1])
# make these tick labels invisible
plt.setp(ax2.get_xticklabels(), visible=False)
ax2.set(xlabel='Window Size', ylabel='Time Taken',
title='')
ax2.grid()
ax2.title.set_position([0.1, 1.25])
if len(implementation) == 3:
print("Plotting 3rd subgraph")
imp_code = implementation[2]
ax3 = plt.subplot(313, sharex=ax1,sharey=ax1)
plt.plot(windows, time_taken_collection[2])
plt.setp(ax3.get_xticklabels(), visible=False)
ax3.set(xlabel='Window Size', ylabel='Time Taken',
title='')
ax3.grid()
plt.xlim(1, 42)
plt.ylim(0,7)
plt.show()