-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvisualize.py
72 lines (58 loc) · 2.25 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import albumentations as A
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from datasets.panoptic_dataset import PanopticDataset
def add_box(ax, box, color='b', thickness=2):
""" Draws annotations in an image.
# Arguments
ax : The matplotlib ax to draw on.
box : A [1, 5] matrix (x1, y1, x2, y2, label).
color : The color of the boxes.
thickness : (optional) thickness of the bbox.
"""
rect = Rectangle((box[0], box[1]), box[2]-box[0], box[3]-box[1],
color=color,
fill=False,
linewidth=thickness
)
ax.add_patch(rect)
def add_boxes(ax, boxes, color, thickness=2):
""" Draws boxes on an image with a given color.
# Arguments
image : The matplotlib ax to draw on.
boxes : A [N, 4] matrix (x1, y1, x2, y2).
color : The color of the boxes.
thickness : The thickness of the lines to draw boxes with.
"""
for b in boxes:
add_box(ax, b, color, thickness=thickness)
def vizualise_input_targets(dataset, seed=65):
# Get a sample
sample = dataset[seed]
# Figure
fig = plt.figure(figsize=(15,10))
for i, (name, tensor) in enumerate(sample.items()):
if name in ['instance', 'image_id']:
continue
ax = fig.add_subplot(2, 3, i+1)
if name == 'image':
add_boxes(ax, sample['instance'].gt_boxes.tensor.numpy(), 'g')
ax.set_title(name)
plt.imshow(tensor)
plt.show()
def main():
base_path = "/home/ubuntu/Elix/cityscapes"
train_json = "gtFine/cityscapes_panoptic_train.json"
transform = A.Compose([
A.Resize(height=512, width=1024),
A.RandomCrop(height=512, width=1024),
A.HorizontalFlip(p=0.5),
A.Normalize(mean=(106.433, 116.617, 119.559), std=(65.496, 67.6, 74.123)),
# A.RandomScale(scale_limit=[0.5, 2]),
# A.RandomSizedCrop()
], bbox_params=A.BboxParams(format='coco', label_fields=['class_labels']))
train_dataset = PanopticDataset(train_json, base_path, 'train', transform=transform)
vizualise_input_targets(train_dataset)
if __name__ == '__main__':
main()