-
Notifications
You must be signed in to change notification settings - Fork 230
/
Copy pathgenerate_script.py
35 lines (26 loc) · 1.24 KB
/
generate_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import librosa
from wavenet_model import *
from audio_data import WavenetDataset
from wavenet_training import *
model = load_latest_model_from('snapshots', use_cuda=False)
print('model: ', model)
print('receptive field: ', model.receptive_field)
print('parameter count: ', model.parameter_count())
data = WavenetDataset(dataset_file='train_samples/bach_chaconne/dataset.npz',
item_length=model.receptive_field + model.output_length - 1,
target_length=model.output_length,
file_location='train_samples/bach_chaconne',
test_stride=20)
print('the dataset has ' + str(len(data)) + ' items')
start_data = data[250000][0]
start_data = torch.max(start_data, 0)[1]
def prog_callback(step, total_steps):
print(str(100 * step // total_steps) + "% generated")
generated = model.generate_fast(num_samples=16000,
first_samples=start_data,
progress_callback=prog_callback,
progress_interval=1000,
temperature=1.0,
regularize=0.)
print(generated)
librosa.output.write_wav('latest_generated_clip.wav', generated, sr=16000)