-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
91 lines (74 loc) · 2.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import numpy as np
import cv2
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_dir = 'data/train'
val_dir = 'data/test'
num_train = 28709
num_val = 7178
batch_size = 64
num_epoch = 50
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(48,48),
batch_size=batch_size,
color_mode="grayscale",
class_mode='categorical')
validation_generator = val_datagen.flow_from_directory(
val_dir,
target_size=(48,48),
batch_size=batch_size,
color_mode="grayscale",
class_mode='categorical')
# Create the model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48,48,1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
model.load_weights('model.h5')
cv2.ocl.setUseOpenCL(False)
emotion_dict = {0: "Angry",
1: "Disgusted",
2: "Fearful",
3: "Happy",
4: "Neutral",
5: "Sad",
6: "Surprised"
}
cap = cv2.VideoCapture(0)
while(True):
# Find haar cascade to draw bounding box around face
ret, frame = cap.read()
if not ret:
break
facecasc = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = facecasc.detectMultiScale(gray,scaleFactor=1.3, minNeighbors=5)
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x,y-50),(x+w,y+h+10),(255,0,0),2)
roi_gray = gray[y:y+h,x:x+w]
cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray,(48,48)),-1),0)
prediction = model.predict(cropped_img)
maxindex = int(np.argmax(prediction))
cv2.putText(frame, emotion_dict[maxindex],(x+20,y-60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2,cv2.LINE_AA)
cv2.imshow('Video', cv2.resize(frame,(1600,960),interpolation=cv2.INTER_CUBIC))
if(cv2.waitKey(1) & (0xFF == ord('q'))):
break
cap.release()
cv2.destroyAllWindows()