forked from ivmai/bdwgc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mallocx.c
635 lines (582 loc) · 21.2 KB
/
mallocx.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
* Copyright (c) 1996 by Silicon Graphics. All rights reserved.
* Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/
#include "private/gc_priv.h"
#include "gc_inline.h" /* for GC_malloc_kind */
/*
* These are extra allocation routines which are likely to be less
* frequently used than those in malloc.c. They are separate in the
* hope that the .o file will be excluded from statically linked
* executables. We should probably break this up further.
*/
#include <stdio.h>
#include <string.h>
#ifdef MSWINCE
# ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN 1
# endif
# define NOSERVICE
# include <windows.h>
#else
# include <errno.h>
#endif
/* Some externally visible but unadvertised variables to allow access to */
/* free lists from inlined allocators without including gc_priv.h */
/* or introducing dependencies on internal data structure layouts. */
#include "gc_alloc_ptrs.h"
void ** const GC_objfreelist_ptr = GC_objfreelist;
void ** const GC_aobjfreelist_ptr = GC_aobjfreelist;
void ** const GC_uobjfreelist_ptr = GC_uobjfreelist;
# ifdef GC_ATOMIC_UNCOLLECTABLE
void ** const GC_auobjfreelist_ptr = GC_auobjfreelist;
# endif
GC_API int GC_CALL GC_get_kind_and_size(const void * p, size_t * psize)
{
hdr * hhdr = HDR(p);
if (psize != NULL) {
*psize = (size_t)hhdr->hb_sz;
}
return hhdr -> hb_obj_kind;
}
GC_API GC_ATTR_MALLOC void * GC_CALL GC_generic_or_special_malloc(size_t lb,
int knd)
{
switch(knd) {
case PTRFREE:
case NORMAL:
return GC_malloc_kind(lb, knd);
case UNCOLLECTABLE:
# ifdef GC_ATOMIC_UNCOLLECTABLE
case AUNCOLLECTABLE:
# endif
return GC_generic_malloc_uncollectable(lb, knd);
default:
return GC_generic_malloc(lb, knd);
}
}
/* Change the size of the block pointed to by p to contain at least */
/* lb bytes. The object may be (and quite likely will be) moved. */
/* The kind (e.g. atomic) is the same as that of the old. */
/* Shrinking of large blocks is not implemented well. */
GC_API void * GC_CALL GC_realloc(void * p, size_t lb)
{
struct hblk * h;
hdr * hhdr;
void * result;
size_t sz; /* Current size in bytes */
size_t orig_sz; /* Original sz in bytes */
int obj_kind;
if (p == 0) return(GC_malloc(lb)); /* Required by ANSI */
if (0 == lb) /* and p != NULL */ {
# ifndef IGNORE_FREE
GC_free(p);
# endif
return NULL;
}
h = HBLKPTR(p);
hhdr = HDR(h);
sz = (size_t)hhdr->hb_sz;
obj_kind = hhdr -> hb_obj_kind;
orig_sz = sz;
if (sz > MAXOBJBYTES) {
/* Round it up to the next whole heap block */
word descr = GC_obj_kinds[obj_kind].ok_descriptor;
sz = (sz + HBLKSIZE-1) & ~HBLKMASK;
if (GC_obj_kinds[obj_kind].ok_relocate_descr)
descr += sz;
/* GC_realloc might be changing the block size while */
/* GC_reclaim_block or GC_clear_hdr_marks is examining it. */
/* The change to the size field is benign, in that GC_reclaim */
/* (and GC_clear_hdr_marks) would work correctly with either */
/* value, since we are not changing the number of objects in */
/* the block. But seeing a half-updated value (though unlikely */
/* to occur in practice) could be probably bad. */
/* Using unordered atomic accesses on the size and hb_descr */
/* fields would solve the issue. (The alternate solution might */
/* be to initially overallocate large objects, so we do not */
/* have to adjust the size in GC_realloc, if they still fit. */
/* But that is probably more expensive, since we may end up */
/* scanning a bunch of zeros during GC.) */
# ifdef AO_HAVE_store
GC_STATIC_ASSERT(sizeof(hhdr->hb_sz) == sizeof(AO_t));
AO_store((volatile AO_t *)&hhdr->hb_sz, (AO_t)sz);
AO_store((volatile AO_t *)&hhdr->hb_descr, (AO_t)descr);
# else
{
DCL_LOCK_STATE;
LOCK();
hhdr -> hb_sz = sz;
hhdr -> hb_descr = descr;
UNLOCK();
}
# endif
# ifdef MARK_BIT_PER_OBJ
GC_ASSERT(hhdr -> hb_inv_sz == LARGE_INV_SZ);
# endif
# ifdef MARK_BIT_PER_GRANULE
GC_ASSERT((hhdr -> hb_flags & LARGE_BLOCK) != 0
&& hhdr -> hb_map[ANY_INDEX] == 1);
# endif
if (IS_UNCOLLECTABLE(obj_kind)) GC_non_gc_bytes += (sz - orig_sz);
/* Extra area is already cleared by GC_alloc_large_and_clear. */
}
if (ADD_SLOP(lb) <= sz) {
if (lb >= (sz >> 1)) {
if (orig_sz > lb) {
/* Clear unneeded part of object to avoid bogus pointer */
/* tracing. */
BZERO(((ptr_t)p) + lb, orig_sz - lb);
}
return(p);
}
/* shrink */
sz = lb;
}
result = GC_generic_or_special_malloc((word)lb, obj_kind);
if (result != NULL) {
/* In case of shrink, it could also return original object. */
/* But this gives the client warning of imminent disaster. */
BCOPY(p, result, sz);
# ifndef IGNORE_FREE
GC_free(p);
# endif
}
return result;
}
# if defined(REDIRECT_MALLOC) && !defined(REDIRECT_REALLOC)
# define REDIRECT_REALLOC GC_realloc
# endif
# ifdef REDIRECT_REALLOC
/* As with malloc, avoid two levels of extra calls here. */
# define GC_debug_realloc_replacement(p, lb) \
GC_debug_realloc(p, lb, GC_DBG_EXTRAS)
# if !defined(REDIRECT_MALLOC_IN_HEADER)
void * realloc(void * p, size_t lb)
{
return(REDIRECT_REALLOC(p, lb));
}
# endif
# undef GC_debug_realloc_replacement
# endif /* REDIRECT_REALLOC */
/* Allocate memory such that only pointers to near the */
/* beginning of the object are considered. */
/* We avoid holding allocation lock while we clear the memory. */
GC_API GC_ATTR_MALLOC void * GC_CALL
GC_generic_malloc_ignore_off_page(size_t lb, int k)
{
void *result;
size_t lg;
size_t lb_rounded;
word n_blocks;
GC_bool init;
DCL_LOCK_STATE;
if (SMALL_OBJ(lb))
return GC_generic_malloc(lb, k);
GC_ASSERT(k < MAXOBJKINDS);
lg = ROUNDED_UP_GRANULES(lb);
lb_rounded = GRANULES_TO_BYTES(lg);
n_blocks = OBJ_SZ_TO_BLOCKS(lb_rounded);
init = GC_obj_kinds[k].ok_init;
if (EXPECT(GC_have_errors, FALSE))
GC_print_all_errors();
GC_INVOKE_FINALIZERS();
GC_DBG_COLLECT_AT_MALLOC(lb);
LOCK();
result = (ptr_t)GC_alloc_large(ADD_SLOP(lb), k, IGNORE_OFF_PAGE);
if (NULL == result) {
GC_oom_func oom_fn = GC_oom_fn;
UNLOCK();
return (*oom_fn)(lb);
}
if (GC_debugging_started) {
BZERO(result, n_blocks * HBLKSIZE);
} else {
# ifdef THREADS
/* Clear any memory that might be used for GC descriptors */
/* before we release the lock. */
((word *)result)[0] = 0;
((word *)result)[1] = 0;
((word *)result)[GRANULES_TO_WORDS(lg)-1] = 0;
((word *)result)[GRANULES_TO_WORDS(lg)-2] = 0;
# endif
}
GC_bytes_allocd += lb_rounded;
UNLOCK();
if (init && !GC_debugging_started) {
BZERO(result, n_blocks * HBLKSIZE);
}
return(result);
}
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_ignore_off_page(size_t lb)
{
return GC_generic_malloc_ignore_off_page(lb, NORMAL);
}
GC_API GC_ATTR_MALLOC void * GC_CALL
GC_malloc_atomic_ignore_off_page(size_t lb)
{
return GC_generic_malloc_ignore_off_page(lb, PTRFREE);
}
/* Increment GC_bytes_allocd from code that doesn't have direct access */
/* to GC_arrays. */
GC_API void GC_CALL GC_incr_bytes_allocd(size_t n)
{
GC_bytes_allocd += n;
}
/* The same for GC_bytes_freed. */
GC_API void GC_CALL GC_incr_bytes_freed(size_t n)
{
GC_bytes_freed += n;
}
GC_API size_t GC_CALL GC_get_expl_freed_bytes_since_gc(void)
{
return (size_t)GC_bytes_freed;
}
# ifdef PARALLEL_MARK
STATIC volatile AO_t GC_bytes_allocd_tmp = 0;
/* Number of bytes of memory allocated since */
/* we released the GC lock. Instead of */
/* reacquiring the GC lock just to add this in, */
/* we add it in the next time we reacquire */
/* the lock. (Atomically adding it doesn't */
/* work, since we would have to atomically */
/* update it in GC_malloc, which is too */
/* expensive.) */
# endif /* PARALLEL_MARK */
/* Return a list of 1 or more objects of the indicated size, linked */
/* through the first word in the object. This has the advantage that */
/* it acquires the allocation lock only once, and may greatly reduce */
/* time wasted contending for the allocation lock. Typical usage would */
/* be in a thread that requires many items of the same size. It would */
/* keep its own free list in thread-local storage, and call */
/* GC_malloc_many or friends to replenish it. (We do not round up */
/* object sizes, since a call indicates the intention to consume many */
/* objects of exactly this size.) */
/* We assume that the size is a multiple of GRANULE_BYTES. */
/* We return the free-list by assigning it to *result, since it is */
/* not safe to return, e.g. a linked list of pointer-free objects, */
/* since the collector would not retain the entire list if it were */
/* invoked just as we were returning. */
/* Note that the client should usually clear the link field. */
GC_API void GC_CALL GC_generic_malloc_many(size_t lb, int k, void **result)
{
void *op;
void *p;
void **opp;
size_t lw; /* Length in words. */
size_t lg; /* Length in granules. */
signed_word my_bytes_allocd = 0;
struct obj_kind * ok = &(GC_obj_kinds[k]);
struct hblk ** rlh;
DCL_LOCK_STATE;
GC_ASSERT(lb != 0 && (lb & (GRANULE_BYTES-1)) == 0);
/* Currently a single object is always allocated if manual VDB. */
/* TODO: GC_dirty should be called for each linked object (but */
/* the last one) to support multiple objects allocation. */
if (!SMALL_OBJ(lb) || GC_manual_vdb) {
op = GC_generic_malloc(lb, k);
if (EXPECT(0 != op, TRUE))
obj_link(op) = 0;
*result = op;
# ifndef GC_DISABLE_INCREMENTAL
if (GC_manual_vdb && GC_is_heap_ptr(result)) {
GC_dirty_inner(result);
REACHABLE_AFTER_DIRTY(op);
}
# endif
return;
}
GC_ASSERT(k < MAXOBJKINDS);
lw = BYTES_TO_WORDS(lb);
lg = BYTES_TO_GRANULES(lb);
if (EXPECT(GC_have_errors, FALSE))
GC_print_all_errors();
GC_INVOKE_FINALIZERS();
GC_DBG_COLLECT_AT_MALLOC(lb);
if (!EXPECT(GC_is_initialized, TRUE)) GC_init();
LOCK();
/* Do our share of marking work */
if (GC_incremental && !GC_dont_gc) {
ENTER_GC();
GC_collect_a_little_inner(1);
EXIT_GC();
}
/* First see if we can reclaim a page of objects waiting to be */
/* reclaimed. */
rlh = ok -> ok_reclaim_list;
if (rlh != NULL) {
struct hblk * hbp;
hdr * hhdr;
rlh += lg;
while ((hbp = *rlh) != 0) {
hhdr = HDR(hbp);
*rlh = hhdr -> hb_next;
GC_ASSERT(hhdr -> hb_sz == lb);
hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no;
# ifdef PARALLEL_MARK
if (GC_parallel) {
signed_word my_bytes_allocd_tmp =
(signed_word)AO_load(&GC_bytes_allocd_tmp);
GC_ASSERT(my_bytes_allocd_tmp >= 0);
/* We only decrement it while holding the GC lock. */
/* Thus we can't accidentally adjust it down in more */
/* than one thread simultaneously. */
if (my_bytes_allocd_tmp != 0) {
(void)AO_fetch_and_add(&GC_bytes_allocd_tmp,
(AO_t)(-my_bytes_allocd_tmp));
GC_bytes_allocd += my_bytes_allocd_tmp;
}
GC_acquire_mark_lock();
++ GC_fl_builder_count;
UNLOCK();
GC_release_mark_lock();
}
# endif
op = GC_reclaim_generic(hbp, hhdr, lb,
ok -> ok_init, 0, &my_bytes_allocd);
if (op != 0) {
# ifdef PARALLEL_MARK
if (GC_parallel) {
*result = op;
(void)AO_fetch_and_add(&GC_bytes_allocd_tmp,
(AO_t)my_bytes_allocd);
GC_acquire_mark_lock();
-- GC_fl_builder_count;
if (GC_fl_builder_count == 0) GC_notify_all_builder();
# ifdef THREAD_SANITIZER
GC_release_mark_lock();
LOCK();
GC_bytes_found += my_bytes_allocd;
UNLOCK();
# else
GC_bytes_found += my_bytes_allocd;
/* The result may be inaccurate. */
GC_release_mark_lock();
# endif
(void) GC_clear_stack(0);
return;
}
# endif
/* We also reclaimed memory, so we need to adjust */
/* that count. */
GC_bytes_found += my_bytes_allocd;
GC_bytes_allocd += my_bytes_allocd;
goto out;
}
# ifdef PARALLEL_MARK
if (GC_parallel) {
GC_acquire_mark_lock();
-- GC_fl_builder_count;
if (GC_fl_builder_count == 0) GC_notify_all_builder();
GC_release_mark_lock();
LOCK();
/* GC lock is needed for reclaim list access. We */
/* must decrement fl_builder_count before reacquiring */
/* the lock. Hopefully this path is rare. */
}
# endif
}
}
/* Next try to use prefix of global free list if there is one. */
/* We don't refill it, but we need to use it up before allocating */
/* a new block ourselves. */
opp = &(GC_obj_kinds[k].ok_freelist[lg]);
if ( (op = *opp) != 0 ) {
*opp = 0;
my_bytes_allocd = 0;
for (p = op; p != 0; p = obj_link(p)) {
my_bytes_allocd += lb;
if ((word)my_bytes_allocd >= HBLKSIZE) {
*opp = obj_link(p);
obj_link(p) = 0;
break;
}
}
GC_bytes_allocd += my_bytes_allocd;
goto out;
}
/* Next try to allocate a new block worth of objects of this size. */
{
struct hblk *h = GC_allochblk(lb, k, 0);
if (h != 0) {
if (IS_UNCOLLECTABLE(k)) GC_set_hdr_marks(HDR(h));
GC_bytes_allocd += HBLKSIZE - HBLKSIZE % lb;
# ifdef PARALLEL_MARK
if (GC_parallel) {
GC_acquire_mark_lock();
++ GC_fl_builder_count;
UNLOCK();
GC_release_mark_lock();
op = GC_build_fl(h, lw,
(ok -> ok_init || GC_debugging_started), 0);
*result = op;
GC_acquire_mark_lock();
-- GC_fl_builder_count;
if (GC_fl_builder_count == 0) GC_notify_all_builder();
GC_release_mark_lock();
(void) GC_clear_stack(0);
return;
}
# endif
op = GC_build_fl(h, lw, (ok -> ok_init || GC_debugging_started), 0);
goto out;
}
}
/* As a last attempt, try allocating a single object. Note that */
/* this may trigger a collection or expand the heap. */
op = GC_generic_malloc_inner(lb, k);
if (0 != op) obj_link(op) = 0;
out:
*result = op;
UNLOCK();
(void) GC_clear_stack(0);
}
/* Note that the "atomic" version of this would be unsafe, since the */
/* links would not be seen by the collector. */
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_many(size_t lb)
{
void *result;
/* Add EXTRA_BYTES and round up to a multiple of a granule. */
lb = SIZET_SAT_ADD(lb, EXTRA_BYTES + GRANULE_BYTES - 1)
& ~(GRANULE_BYTES - 1);
GC_generic_malloc_many(lb, NORMAL, &result);
return result;
}
#include <limits.h>
/* Debug version is tricky and currently missing. */
GC_API GC_ATTR_MALLOC void * GC_CALL GC_memalign(size_t align, size_t lb)
{
size_t new_lb;
size_t offset;
ptr_t result;
if (align <= GRANULE_BYTES) return GC_malloc(lb);
if (align >= HBLKSIZE/2 || lb >= HBLKSIZE/2) {
if (align > HBLKSIZE) {
return (*GC_get_oom_fn())(LONG_MAX-1024); /* Fail */
}
return GC_malloc(lb <= HBLKSIZE? HBLKSIZE : lb);
/* Will be HBLKSIZE aligned. */
}
/* We could also try to make sure that the real rounded-up object size */
/* is a multiple of align. That would be correct up to HBLKSIZE. */
new_lb = SIZET_SAT_ADD(lb, align - 1);
result = (ptr_t)GC_malloc(new_lb);
/* It is OK not to check result for NULL as in that case */
/* GC_memalign returns NULL too since (0 + 0 % align) is 0. */
offset = (word)result % align;
if (offset != 0) {
offset = align - offset;
if (!GC_all_interior_pointers) {
GC_STATIC_ASSERT(VALID_OFFSET_SZ <= HBLKSIZE);
GC_ASSERT(offset < VALID_OFFSET_SZ);
GC_register_displacement(offset);
}
}
result += offset;
GC_ASSERT((word)result % align == 0);
return result;
}
/* This one exists largely to redirect posix_memalign for leaks finding. */
GC_API int GC_CALL GC_posix_memalign(void **memptr, size_t align, size_t lb)
{
/* Check alignment properly. */
size_t align_minus_one = align - 1; /* to workaround a cppcheck warning */
if (align < sizeof(void *) || (align_minus_one & align) != 0) {
# ifdef MSWINCE
return ERROR_INVALID_PARAMETER;
# else
return EINVAL;
# endif
}
if ((*memptr = GC_memalign(align, lb)) == NULL) {
# ifdef MSWINCE
return ERROR_NOT_ENOUGH_MEMORY;
# else
return ENOMEM;
# endif
}
return 0;
}
/* provide a version of strdup() that uses the collector to allocate the
copy of the string */
GC_API GC_ATTR_MALLOC char * GC_CALL GC_strdup(const char *s)
{
char *copy;
size_t lb;
if (s == NULL) return NULL;
lb = strlen(s) + 1;
copy = (char *)GC_malloc_atomic(lb);
if (NULL == copy) {
# ifndef MSWINCE
errno = ENOMEM;
# endif
return NULL;
}
BCOPY(s, copy, lb);
return copy;
}
GC_API GC_ATTR_MALLOC char * GC_CALL GC_strndup(const char *str, size_t size)
{
char *copy;
size_t len = strlen(str); /* str is expected to be non-NULL */
if (len > size)
len = size;
copy = (char *)GC_malloc_atomic(len + 1);
if (copy == NULL) {
# ifndef MSWINCE
errno = ENOMEM;
# endif
return NULL;
}
if (EXPECT(len > 0, TRUE))
BCOPY(str, copy, len);
copy[len] = '\0';
return copy;
}
#ifdef GC_REQUIRE_WCSDUP
# include <wchar.h> /* for wcslen() */
GC_API GC_ATTR_MALLOC wchar_t * GC_CALL GC_wcsdup(const wchar_t *str)
{
size_t lb = (wcslen(str) + 1) * sizeof(wchar_t);
wchar_t *copy = (wchar_t *)GC_malloc_atomic(lb);
if (copy == NULL) {
# ifndef MSWINCE
errno = ENOMEM;
# endif
return NULL;
}
BCOPY(str, copy, lb);
return copy;
}
#endif /* GC_REQUIRE_WCSDUP */
#ifndef CPPCHECK
GC_API void * GC_CALL GC_malloc_stubborn(size_t lb)
{
return GC_malloc(lb);
}
GC_API void GC_CALL GC_change_stubborn(const void *p GC_ATTR_UNUSED)
{
/* Empty. */
}
#endif /* !CPPCHECK */
GC_API void GC_CALL GC_end_stubborn_change(const void *p)
{
GC_dirty(p); /* entire object */
}
GC_API void GC_CALL GC_ptr_store_and_dirty(void *p, const void *q)
{
*(const void **)p = q;
GC_dirty(p);
REACHABLE_AFTER_DIRTY(q);
}