From aa0e05300c010fb96c4753decb7309ba0bf3e281 Mon Sep 17 00:00:00 2001 From: Rishabh Bali Date: Sun, 24 Dec 2023 04:22:04 +0530 Subject: [PATCH] Formatting changes --- docs/userDocs/source/user/UsingClad.rst | 24 ++-- docs/userDocs/source/user/tutorials.rst | 140 ++++++++++++------------ 2 files changed, 84 insertions(+), 80 deletions(-) diff --git a/docs/userDocs/source/user/UsingClad.rst b/docs/userDocs/source/user/UsingClad.rst index 3c32c3dca..d54f0edaa 100644 --- a/docs/userDocs/source/user/UsingClad.rst +++ b/docs/userDocs/source/user/UsingClad.rst @@ -222,16 +222,20 @@ that needs to be differentiated even when we want to differentiate w.r.t entire .. code-block:: cpp - #include "clad/Differentiator/Differentiator.h" - double fn(double x, double arr[2]) { return x * arr[0] * arr[1]; } - int main() { - auto fn_hessian = clad::hessian(fn, "x, arr[0:1]"); - // We have 3 independent variables thus we require space of 9. - double mat_fn[9] = {0}; - clad::array_ref mat_fn_ref(mat_fn, 9); - double num[2] = {1, 2}; - fn_hessian.execute(3, num, mat_fn_ref); - } + #include "clad/Differentiator/Differentiator.h" + + double fn(double x, double arr[2]) { return x * arr[0] * arr[1]; } + + int main() { + + auto fn_hessian = clad::hessian(fn, "x, arr[0:1]"); + + // We have 3 independent variables thus we require space of 9. + double mat_fn[9] = {0}; + clad::array_ref mat_fn_ref(mat_fn, 9); + double num[2] = {1, 2}; + fn_hessian.execute(3, num, mat_fn_ref); + } Jacobian Computation ---------------------- diff --git a/docs/userDocs/source/user/tutorials.rst b/docs/userDocs/source/user/tutorials.rst index a64b223a8..a7f934567 100644 --- a/docs/userDocs/source/user/tutorials.rst +++ b/docs/userDocs/source/user/tutorials.rst @@ -12,20 +12,20 @@ API call. .. code-block:: cpp - #include - #include "clad/Differentiator/Differentiator.h" + #include + #include "clad/Differentiator/Differentiator.h" - double func(int x) { return x * x; } + double func(int x) { return x * x; } - int main() { - /*Calling clad::differentiate to get the forward mode derivative of - the given mathematical function*/ - auto d_func = clad::differentiate(func, "x"); - // execute the generated derivative function. - std::cout << d_func.execute(/*x =*/3) << std::endl; - // Dump the generated derivative code to std output. - d_func.dump(); - } + int main() { + /*Calling clad::differentiate to get the forward mode derivative of + the given mathematical function*/ + auto d_func = clad::differentiate(func, "x"); + // execute the generated derivative function. + std::cout << d_func.execute(/*x =*/3) << std::endl; + // Dump the generated derivative code to std output. + d_func.dump(); + } Here we are differentiating a function `func` which takes an input `x` and returns a scaler value `x * x`.`.dump()` method is used to get a dump of generated @@ -38,17 +38,17 @@ API call. .. code-block:: cpp - #include - #include "clad/Differentiator/Differentiator.h" + #include + #include "clad/Differentiator/Differentiator.h" - double f(double x, double y, double z) { return x * y * z; } + double f(double x, double y, double z) { return x * y * z; } - int main() { - auto d_f = clad::gradient(f, "x, y"); - double dx = 0, dy = 0; - d_f.execute(/*x=*/2, /*y=*/3, /*z=*/4, &dx, &dy); - std::cout << "dx : " << dx << "dy :" << dy << std::endl; - } + int main() { + auto d_f = clad::gradient(f, "x, y"); + double dx = 0, dy = 0; + d_f.execute(/*x=*/2, /*y=*/3, /*z=*/4, &dx, &dy); + std::cout << "dx : " << dx << "dy :" << dy << std::endl; + } In the above example we are differentiating w.r.t `x and y` we can also differentiate w.r.t to single argument i.e. either `x` or `y` as `clad::gradient(f, "x")` @@ -63,29 +63,29 @@ It returns the hessian matrix as a flattened vector in row major format. .. code-block:: cpp - #include - #include "clad/Differentiator/Differentiator.h" + #include + #include "clad/Differentiator/Differentiator.h" - double f(double x, double y, double z) { return x * y * z; } + double f(double x, double y, double z) { return x * y * z; } - // Function with array input + // Function with array input - double f_arr(double x, double y, double z[2]) { return x * y * z[0] * z[1]; } + double f_arr(double x, double y, double z[2]) { return x * y * z[0] * z[1]; } - int main() { - // Workflow similar to clad::gradient for non-array input arguments. - auto f_hess = clad::hessian(f, "x, y"); - double matrix_f[9] = {0}; - clad::array_ref matrix_f_ref(matrix_f, 9); - f_hess.execute(3, 4, 5, matrix_f_ref); - std::cout << "[" << matrix_f_ref[0] << ", " << matrix_f_ref[1] - << matrix_f_ref[2] << "\n" - << matrix_f_ref[3] << ", " << matrix_f_ref[4] << matrix_f_ref[5] - << "\n" - << matrix_f_ref[6] << ", " << matrix_f_ref[7] << matrix_f_ref[8] - << "]" - << "\n"; - } + int main() { + // Workflow similar to clad::gradient for non-array input arguments. + auto f_hess = clad::hessian(f, "x, y"); + double matrix_f[9] = {0}; + clad::array_ref matrix_f_ref(matrix_f, 9); + f_hess.execute(3, 4, 5, matrix_f_ref); + std::cout << "[" << matrix_f_ref[0] << ", " << matrix_f_ref[1] + << matrix_f_ref[2] << "\n" + << matrix_f_ref[3] << ", " << matrix_f_ref[4] << matrix_f_ref[5] + << "\n" + << matrix_f_ref[6] << ", " << matrix_f_ref[7] << matrix_f_ref[8] + << "]" + << "\n"; + } When arrays are involved we need to specify the array index that needs to be differentiated. For example if we want to differentiate w.r.t to the first two @@ -101,27 +101,27 @@ jacobian matrix as a flattened vector with elements arranged in row-major format .. code-block:: cpp - #include - #include "clad/Differentiator/Differentiator.h" + #include + #include "clad/Differentiator/Differentiator.h" - void f(double x, double y, double z, double* output) { - output[0] = x * y; - output[1] = y * y * x; - output[2] = 6 * x * y * z; - } + void f(double x, double y, double z, double* output) { + output[0] = x * y; + output[1] = y * y * x; + output[2] = 6 * x * y * z; + } - int main() { - auto f_jac = clad::jacobian(f); + int main() { + auto f_jac = clad::jacobian(f); - double jac[9] = {0}; - double output[3] = {0}; - f_jac.execute(3, 4, 5, output, jac); - std::cout << jac[0] << " " << jac[1] << std::endl - << jac[2] << " " << jac[3] << std::endl - << jac[4] << " " << jac[5] << std::endl - << jac[6] << " " << jac[7] << std::endl - << jac[8] << std::endl; - } + double jac[9] = {0}; + double output[3] = {0}; + f_jac.execute(3, 4, 5, output, jac); + std::cout << jac[0] << " " << jac[1] << std::endl + << jac[2] << " " << jac[3] << std::endl + << jac[4] << " " << jac[5] << std::endl + << jac[6] << " " << jac[7] << std::endl + << jac[8] << std::endl; + } The jacobian matrix size should be equal to `no. of independent variables times the number of outputs in the original function` in the above example it would be @@ -134,22 +134,22 @@ code using reverse mode AD. .. code-block:: cpp - #include - #include "clad/Differentiator/Differentiator.h" + #include + #include "clad/Differentiator/Differentiator.h" - double func(double x, double y) { return x * y; } + double func(double x, double y) { return x * y; } - int main() { + int main() { - auto dfunc_error = clad::estimate_error(func); - // Used to print generated code to standard output. - dfunc_error.dump(); - double x, y, d_x, d_y, final_error = 0; - // Call execute - dfunc_error.execute(x, y, &d_x, &d_y, final_error); + auto dfunc_error = clad::estimate_error(func); + // Used to print generated code to standard output. + dfunc_error.dump(); + double x, y, d_x, d_y, final_error = 0; + // Call execute + dfunc_error.execute(x, y, &d_x, &d_y, final_error); - std::cout << final_error; - } + std::cout << final_error; + } The function signature is similar to `clad::gradient` except we need to add an extra argument of type `double&` which is used to store the total floating point