-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
83 lines (65 loc) · 2.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import time
import torch
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import torch.nn.init
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.manual_seed(777)
if device == 'cuda':
torch.cuda.manual_seed(777)
path_train = './train'
path_test = './test'
learning_rate = 0.001
training_epoch = 15
batch_size = 128
time.perf_counter()
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(0.5,0.5,0.5),(0.5,0.5,0.5)])
image_train = dsets.ImageFolder(root=path_train, transform=transform)
image_test = dsets.ImageFolder(root=path_test, transform=transform)
data_loader = torch.utils.data.DataLoader(dataset=image_train, batch_size=batch_size,
shuffle=True, drop_last=True)
data_loader_test = torch.utils.data.DataLoader(dataset=image_test, batch_size=batch_size,
shuffle=True, drop_last=True)
class CNN(torch.nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = torch.nn.Sequential(
torch.nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = torch.nn.Sequential(
torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = torch.nn.Linear(7 * 7 * 64, 10, bias=True)
torch.nn.init.xavier_uniform_(self.fc.weight)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
model = CNN().to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
total_batch = len(data_loader)
for epoch in range(training_epoch):
avg_cost = 0
for num, data in enumerate(data_loader):
inputs, labels = data[0].to(device, non_blocking=True), data[1].to(device, non_blocking=True)
optimizer.zero_grad()
hypothesis = model(inputs)
cost = criterion(hypothesis, labels)
cost.backward()
optimizer.step()
avg_cost += cost / total_batch
print('[Epoch: {:>4}] cost = {:>.9}'.format(epoch + 1, avg_cost))
print('Learning finished')
with torch.no_grad():
for num, data in enumerate(data_loader_test):
inputs, labels = data[0].to(device, non_blocking=True), data[1].to(device, non_blocking=True)
prediction = model(inputs)
correct_prediction = torch.argmax(prediction, 1) == labels
accuracy = correct_prediction.float().mean()
print('Accuracy:', accuracy.item())
print(time.perf_counter())