forked from endrikacupaj/LASAGNE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
132 lines (111 loc) · 4.57 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import time
import random
import logging
import torch
import numpy as np
import torch.optim
import torch.nn as nn
from pathlib import Path
from model import LASAGNE
from dataset import CSQADataset
from torchtext.data import BucketIterator
from utils import SingleTaskLoss, MultiTaskLoss, AverageMeter, Scorer, Predictor
# import constants
from constants import *
# set logger
logging.basicConfig(format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
datefmt='%d/%m/%Y %I:%M:%S %p',
level=logging.INFO,
handlers=[
logging.FileHandler(f'{args.path_results}/test.log', 'w'),
logging.StreamHandler()
])
logger = logging.getLogger(__name__)
# set a seed value
random.seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
def main():
# load data
dataset = CSQADataset()
vocabs = dataset.get_vocabs()
_, val_data, test_data = dataset.get_data()
_, val_helper, test_helper = dataset.get_data_helper()
# load model
model = LASAGNE(vocabs).to(DEVICE)
# define loss function (criterion)
criterion = {
LOGICAL_FORM: SingleTaskLoss,
NER: SingleTaskLoss,
COREF: SingleTaskLoss,
GRAPH: SingleTaskLoss,
MULTITASK: MultiTaskLoss
}[args.task](ignore_index=vocabs[LOGICAL_FORM].stoi[PAD_TOKEN])
logger.info(f"=> loading checkpoint '{args.model_path}'")
if DEVICE.type=='cpu':
checkpoint = torch.load(f'{ROOT_PATH}/{args.model_path}', encoding='latin1', map_location='cpu')
else:
checkpoint = torch.load(f'{ROOT_PATH}/{args.model_path}', encoding='latin1')
args.start_epoch = checkpoint[EPOCH]
model.load_state_dict(checkpoint[STATE_DICT])
logger.info(f"=> loaded checkpoint '{args.model_path}' (epoch {checkpoint[EPOCH]})")
# prepare training and validation loader
val_loader, test_loader = BucketIterator.splits((val_data, test_data),
batch_size=args.batch_size,
sort_within_batch=False,
sort_key=lambda x: len(x.input),
device=DEVICE)
logger.info('Loaders prepared.')
logger.info(f"Validation data: {len(val_data.examples)}")
logger.info(f"Test data: {len(test_data.examples)}")
# calculate loss
val_loss = test(val_loader, model, vocabs, criterion)
logger.info(f'* Val Loss: {val_loss:.4f}')
test_loss = test(test_loader, model, vocabs, criterion)
logger.info(f'* Test Loss: {test_loss:.4f}')
# calculate accuracy
predictor = Predictor(model, vocabs, DEVICE)
# val_scorer = Scorer()
test_scorer = Scorer()
# val_scorer.data_score(val_data.examples, val_helper, predictor)
test_scorer.data_score(test_data.examples, test_helper, predictor)
test_scorer.write_results()
# log results
for partition, results in [['Test', test_scorer.results]]: # [['Val', val_scorer.results], ['Test', test_scorer.results]]:
logger.info(f'* {partition} Data Results:')
for question_type, question_type_results in results.items():
logger.info(f'\t{question_type}:')
for task, task_result in question_type_results.items():
logger.info(f'\t\t{task}: {task_result.accuracy:.4f}')
def test(loader, model, vocabs, criterion):
losses = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
for _, batch in enumerate(loader):
# get inputs
input = batch.input
logical_form = batch.logical_form
ner = batch.ner
coref = batch.coref
graph = batch.graph
# compute output
output = model(input, logical_form[:, :-1])
# prepare targets
target = {
LOGICAL_FORM: logical_form[:, 1:].contiguous().view(-1), # (batch_size * trg_len)
NER: ner.contiguous().view(-1),
COREF: coref.contiguous().view(-1),
GRAPH: graph[:, 1:].contiguous().view(-1)
}
# compute loss
loss = criterion(output, target) if args.task == MULTITASK else criterion(output[args.task], target[args.task])
# record loss
losses.update(loss.data, input.size(0))
return losses.avg
if __name__ == '__main__':
main()