forked from endrikacupaj/LASAGNE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph.py
42 lines (36 loc) · 1.78 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import json
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch_geometric.data import Data
# import constants
from constants import *
class TypeRelationGraph:
def __init__(self, vocab, type_path=f'{ROOT_PATH}'):
self.vocab = vocab
self.existing_nodes = list(vocab.stoi.keys())
self.type_triples = json.loads(open(f'{type_path}/knowledge_graph/wikidata_type_dict.json').read())
self.bert_embeddings = json.loads(open(f'{type_path}/knowledge_graph/node_embeddings.json').read())
self.nodes = torch.tensor([self.bert_embeddings[node] for node in self.existing_nodes], requires_grad=True)
self.start = []
self.end = []
self.existing_edges = []
# create edges
self._create_edges()
# create PyG graph
self.data = Data(x=self.nodes, edge_index=torch.LongTensor([self.start, self.end])).to(DEVICE)
def _create_edges(self):
# extract graph data from KG
for head in self.type_triples:
if head in self.vocab.stoi: # only types that are in vocab
for relation in self.type_triples[head]:
if relation in self.vocab.stoi: # only predicates that are in vocab
self._add_edge(head, relation) # add head -> relation edge
for tail in self.type_triples[head][relation]:
if tail in self.vocab.stoi:
self._add_edge(relation, tail) # add relation -> tail edge
def _add_edge(self, start, end):
if f'{start}->{end}' not in self.existing_edges:
self.start.append(self.existing_nodes.index(start))
self.end.append(self.existing_nodes.index(end))
self.existing_edges.append(f'{start}->{end}')