forked from google/categorybuilder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
category_builder_util.py
254 lines (211 loc) · 9.73 KB
/
category_builder_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import bz2
import csv
import io
import itertools
import os.path
import sqlite3
from collections import defaultdict
from alive_progress import alive_bar
# Filenames for input paths
I_TO_F_INPUT = 'candidate_release-i-to-f.csv.bz2'
F_TO_I_INPUT = 'candidate_release-f-to-i.csv.bz2'
# Sqlite3 database filename.
SQLITE3_DB = 'cb.db'
def process_bz2file_into_db(infile, table_name, cursor, connection, expected_size):
with bz2.BZ2File(infile) as f:
csv_reader = csv.reader(map((lambda x: x.decode('utf-8')), f))
line_num = 0
with alive_bar(expected_size) as bar:
for line in csv_reader:
if len(line) % 2 == 0:
print(f'Malformed line: >>{line}<<')
output = io.StringIO()
writer = csv.writer(output)
writer.writerow(line[1:])
key, rest = line[0], output.getvalue()
cursor.execute(f"insert into {table_name} values (?, ?)", (key, rest.strip()))
line_num += 1
if line_num % 100 == 0:
connection.commit()
bar()
connection.commit()
def add_c_relations_as_i_to_f(data_dir):
"""The CB paper was optimized for size. For CBC, we need the map available from i_to_f as well."""
connection = sqlite3.connect(os.path.join(data_dir, SQLITE3_DB))
cursor = connection.cursor()
f_to_i_input = os.path.join(data_dir, F_TO_I_INPUT)
item_to_features = defaultdict(list)
with bz2.BZ2File(f_to_i_input) as f:
csv_reader = csv.reader(map((lambda x: x.decode('utf-8')), f))
line_num = 0
with alive_bar(1148327) as bar:
for line in csv_reader:
line_num += 1
if len(line) % 2 == 0:
print(f'Malformed line: >>{line}<<')
feature = line[0]
if feature.startswith("S"):
bar()
continue
iterators = [iter(line[1:])] * 2
grouped = [(p[0], int(p[1]))
for p in itertools.zip_longest(*iterators)]
item_dict = dict(grouped)
for item, wt in item_dict.items():
item_to_features[item].append((feature, int(wt)))
bar()
cursor.execute(f'CREATE TABLE I_TO_F_C (item text, features text)')
connection.commit()
lines_num = 0
with alive_bar(len(item_to_features)) as bar:
for item, features in item_to_features.items():
features_sorted = sorted(features,
key=lambda x: -x[1])
row_to_write = []
for f, wt in features_sorted:
row_to_write.append(f)
row_to_write.append(str(wt))
output = io.StringIO()
writer = csv.writer(output)
writer.writerow(row_to_write)
key, rest = item, output.getvalue()
cursor.execute(f"insert into I_TO_F_C values (?, ?)", (key, rest.strip()))
line_num += 1
if line_num % 100 == 0:
connection.commit()
bar()
connection.commit()
print(f"Creating indices.")
cursor.execute(f'CREATE INDEX I_TO_F_C_IDX ON I_TO_F_C (item)')
connection.commit()
def create_db(data_dir, verbose=False):
"""Convert a pair of CSV files to a sqlite3 database.
This is a no-op if outfile exists.
"""
db_path = os.path.join(data_dir, SQLITE3_DB)
i_to_f_input = os.path.join(data_dir, I_TO_F_INPUT)
f_to_i_input = os.path.join(data_dir, F_TO_I_INPUT)
if verbose:
print(f"Checking if we need to produce '{db_path}' from '{i_to_f_input}' and '{f_to_i_input}")
if os.path.exists(db_path):
return
connection = sqlite3.connect(db_path)
cursor = connection.cursor()
cursor.execute(f'CREATE TABLE I_TO_F (item text, features text)')
cursor.execute(f'CREATE TABLE F_TO_I (feature text, items text)')
connection.commit()
print("INITIALIZING. ONLY DONE ONCE, WILL TAKE A FEW MINUTES.")
print(f"Creating table 1 of 3: item-to-feature matrix.")
process_bz2file_into_db(i_to_f_input, 'I_TO_F', cursor, connection, expected_size=192049)
print(f"Creating table 2 of 3: feature-to-item matrix.")
process_bz2file_into_db(f_to_i_input, 'F_TO_I', cursor, connection, expected_size=1148327)
print(f"Creating indices.")
cursor.execute(f'CREATE INDEX I_TO_F_IDX ON I_TO_F (item)')
cursor.execute(f'CREATE INDEX F_TO_I_IDX ON F_TO_I (feature)')
connection.commit()
print(f"Creating table 3 of 3: item-to-feature matrix (contextual).")
add_c_relations_as_i_to_f(data_dir=data_dir)
def get_row(cursor, table_name, field_name, key):
cursor.execute(f"select * from {table_name} where {field_name}=?""", (key,))
results = cursor.fetchall()
if results:
row_string = results[0][1]
else:
return dict()
pieces = next(csv.reader([row_string]))
iterators = [iter(pieces)] * 2
grouped = [(p[0], float(p[1]) / 100)
for p in itertools.zip_longest(*iterators)]
return dict(grouped)
def restrict_to_syntactic(looked_up_row):
return dict(p for p in looked_up_row.items() if p[0][0] == 'S')
def restrict_to_cooc(looked_up_row):
return dict(p for p in looked_up_row.items() if p[0][0] == 'C')
def MatrixMultiply(cursor, table_name, field_name, wtd_seeds, rho=0.0, filterfn=None):
each_seed_fraction = 1.0 / len(wtd_seeds)
context_fraction = defaultdict(float)
context_weight = defaultdict(float)
for s, seed_wt in wtd_seeds:
unfiltered_row = get_row(cursor, table_name, field_name, s)
if filterfn:
contexts_for_s = filterfn(unfiltered_row)
else:
contexts_for_s = unfiltered_row
for c, wt in contexts_for_s.items():
context_fraction[c] += each_seed_fraction
context_weight[c] += seed_wt * wt
# Now we penalize contexts not seen with all items.
for context, fraction in context_fraction.items():
context_weight[context] *= pow(fraction, rho)
sorted_contexts = sorted(context_weight.items(), reverse=True,
key=lambda x: x[1])
return sorted_contexts
def MergeScores(a_scores, b_scores, squash=100.0):
total_score = defaultdict(float)
for k, v in a_scores:
total_score[k] += 1.0 * squash * v / (squash - 1.0 + v)
for k, v in b_scores:
if k not in total_score:
continue
total_score[k] += 1.0 * squash * v / (squash - 1.0 + v)
return sorted(total_score.items(), reverse=True,
key=lambda x: x[1])
class CategoryBuilder(object):
def __init__(self, data_dir):
self.data_dir = data_dir
create_db(data_dir, verbose=False)
self.connection = sqlite3.connect(os.path.join(data_dir, SQLITE3_DB))
self.cursor = self.connection.cursor()
def GetItemsGivenWeightedContexts(self, wtd_contexts):
return MatrixMultiply(self.cursor, 'F_TO_I', 'feature', wtd_contexts, 0.0)
def ExpandCategory(self, seeds, rho, n):
sorted_contexts = MatrixMultiply(self.cursor, 'I_TO_F', 'item',
wtd_seeds=[(x, 1) for x in seeds],
rho=rho,
filterfn=restrict_to_syntactic)
if not sorted_contexts:
print(f"Did not find any contexts for {seeds}")
return []
return MatrixMultiply(self.cursor, 'F_TO_I', 'feature',
wtd_seeds=sorted_contexts[:n],
rho=0)
def GetCooccurringItems(self, seed):
sorted_contexts = MatrixMultiply(self.cursor, 'I_TO_F', 'item',
wtd_seeds=((seed, 1.0),),
rho=0,
filterfn=restrict_to_cooc)
if not sorted_contexts:
print(f"Did not find any contexts for '{seed}'")
return []
return MatrixMultiply(self.cursor, 'F_TO_I', 'feature',
wtd_seeds=sorted_contexts,
rho=0)
def DoAnalogy(self, b, c, squash, semantic_n=100):
print(f"Looking for the '{b}' of the '{c}'")
# Since we have a single seed, the exact value of rho does not matter.
# This is so because we multiply the weight sum by fraction ^ rho, and
# fraction with a single seed can only ever be 0 or 1.
things_like_b = self.ExpandCategory(seeds=[b, ], rho=1, n=semantic_n)
things_cooccuring_with_c = self.GetCooccurringItems(seed=c)
return MergeScores(things_like_b, things_cooccuring_with_c, squash=squash)
def GetSyntacticFeaturesForItem(self, item):
syntactic_features = get_row(self.cursor, 'I_TO_F', 'item', item)
# Due to a bad design choice, there may be a single contextual feature here, with wt 100.
return dict((k, v) for (k, v) in syntactic_features.items() if k.startswith('S'))
def GetContextualFeaturesForItem(self, item):
return get_row(self.cursor, 'I_TO_F_C', 'item', item)
def GetItemsForFeature(self, feature):
return get_row(self.cursor, 'F_TO_I', 'feature', feature)