-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathdump_data.py
executable file
·466 lines (422 loc) · 14.9 KB
/
dump_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#!/usr/bin/env python3
# dump_data.py ---
#
# Filename: dump_data.py
# Description:
# Author: Kwang Moo Yi
# Maintainer:
# Created: Mon Apr 2 18:33:34 2018 (-0700)
# Version:
# Package-Requires: ()
# URL:
# Doc URL:
# Keywords:
# Compatibility:
#
#
# Commentary:
#
#
#
#
# Change Log:
#
#
#
# Copyright (C)
# Visual Computing Group @ University of Victoria
# Computer Vision Lab @ EPFL
# Code:
from __future__ import print_function
import itertools
import multiprocessing as mp
import os
import pickle
import sys
import time
import numpy as np
import cv2
from config import get_config
from data import loadFromDir
from geom import get_episqr, get_episym, get_sampsons, parse_geom
from six.moves import xrange
from utils import loadh5, saveh5
eps = 1e-10
use3d = False
config = None
config, unparsed = get_config()
def dump_data_pair(args):
dump_dir, idx, ii, jj, queue = args
# queue for monitoring
if queue is not None:
queue.put(idx)
dump_file = os.path.join(
dump_dir, "idx_sort-{}-{}.h5".format(ii, jj))
if not os.path.exists(dump_file):
# Load descriptors for ii
desc_ii = loadh5(
os.path.join(dump_dir, "kp-z-desc-{}.h5".format(ii)))["desc"]
desc_jj = loadh5(
os.path.join(dump_dir, "kp-z-desc-{}.h5".format(jj)))["desc"]
# compute decriptor distance matrix
distmat = np.sqrt(
np.sum(
(np.expand_dims(desc_ii, 1) - np.expand_dims(desc_jj, 0))**2,
axis=2))
# Choose K best from N
idx_sort = np.argsort(distmat, axis=1)[:, :config.obj_num_nn]
idx_sort = (
np.repeat(
np.arange(distmat.shape[0])[..., None],
idx_sort.shape[1], axis=1
),
idx_sort
)
distmat = distmat[idx_sort]
# Dump to disk
dump_dict = {}
dump_dict["idx_sort"] = idx_sort
saveh5(dump_dict, dump_file)
def make_xy(num_sample, pairs, kp, z, desc, img, geom, vis, depth, geom_type,
cur_folder):
xs = []
ys = []
Rs = []
ts = []
img1s = []
img2s = []
cx1s = []
cy1s = []
f1s = []
cx2s = []
cy2s = []
f2s = []
# Create a random folder in scratch
dump_dir = os.path.join(cur_folder, "dump")
if not os.path.exists(dump_dir):
os.makedirs(dump_dir)
# randomly suffle the pairs and select num_sample amount
np.random.seed(1234)
cur_pairs = [
pairs[_i] for _i in np.random.permutation(len(pairs))[:num_sample]
]
idx = 0
for ii, jj in cur_pairs:
idx += 1
print(
"\rExtracting keypoints {} / {}".format(idx, len(cur_pairs)),
end="")
sys.stdout.flush()
# Check and extract keypoints if necessary
for i in [ii, jj]:
dump_file = os.path.join(dump_dir, "kp-z-desc-{}.h5".format(i))
if not os.path.exists(dump_file):
if kp[i] is None:
cv_kp, cv_desc = sift.detectAndCompute(img[i].transpose(
1, 2, 0), None)
cx = (img[i][0].shape[1] - 1.0) * 0.5
cy = (img[i][0].shape[0] - 1.0) * 0.5
# Correct coordinates using K
cx += parse_geom(geom, geom_type)["K"][i, 0, 2]
cy += parse_geom(geom, geom_type)["K"][i, 1, 2]
xy = np.array([_kp.pt for _kp in cv_kp])
# Correct focals
fx = parse_geom(geom, geom_type)["K"][i, 0, 0]
fy = parse_geom(geom, geom_type)["K"][i, 1, 1]
# Coordinate Normalization
kp[i] = (
xy - np.array([[cx, cy]])
) / np.asarray([[fx, fy]])
desc[i] = cv_desc
if z[i] is None:
cx = (img[i][0].shape[1] - 1.0) * 0.5
cy = (img[i][0].shape[0] - 1.0) * 0.5
fx = parse_geom(geom, geom_type)["K"][i, 0, 0]
fy = parse_geom(geom, geom_type)["K"][i, 1, 1]
xy = kp[i] * np.asarray([[fx, fy]]) + np.array([[cx, cy]])
if len(depth) > 0:
z[i] = depth[i][
0,
np.round(xy[:, 1]).astype(int),
np.round(xy[:, 0]).astype(int)][..., None]
else:
z[i] = np.ones((xy.shape[0], 1))
# Write descs to harddisk to parallize
dump_dict = {}
dump_dict["kp"] = kp[i]
dump_dict["z"] = z[i]
dump_dict["desc"] = desc[i]
saveh5(dump_dict, dump_file)
else:
dump_dict = loadh5(dump_file)
kp[i] = dump_dict["kp"]
z[i] = dump_dict["z"]
desc[i] = dump_dict["desc"]
print("")
# Create arguments
pool_arg = []
idx = 0
for ii, jj in cur_pairs:
idx += 1
pool_arg += [(dump_dir, idx, ii, jj)]
# Run mp job
ratio_CPU = 0.8
number_of_process = int(ratio_CPU * mp.cpu_count())
pool = mp.Pool(processes=number_of_process)
manager = mp.Manager()
queue = manager.Queue()
for idx_arg in xrange(len(pool_arg)):
pool_arg[idx_arg] = pool_arg[idx_arg] + (queue,)
# map async
pool_res = pool.map_async(dump_data_pair, pool_arg)
# monitor loop
while True:
if pool_res.ready():
break
else:
size = queue.qsize()
print("\rDistMat {} / {}".format(size, len(pool_arg)), end="")
sys.stdout.flush()
time.sleep(1)
pool.close()
pool.join()
print("")
# Pack data
idx = 0
total_num = 0
good_num = 0
bad_num = 0
for ii, jj in cur_pairs:
idx += 1
print("\rWorking on {} / {}".format(idx, len(cur_pairs)), end="")
sys.stdout.flush()
# ------------------------------
# Get dR
R_i = parse_geom(geom, geom_type)["R"][ii]
R_j = parse_geom(geom, geom_type)["R"][jj]
dR = np.dot(R_j, R_i.T)
# Get dt
t_i = parse_geom(geom, geom_type)["t"][ii].reshape([3, 1])
t_j = parse_geom(geom, geom_type)["t"][jj].reshape([3, 1])
dt = t_j - np.dot(dR, t_i)
# ------------------------------
# Get sift points for the first image
x1 = kp[ii]
y1 = np.concatenate([kp[ii] * z[ii], z[ii]], axis=1)
# Project the first points into the second image
y1p = np.matmul(dR[None], y1[..., None]) + dt[None]
# move back to the canonical plane
x1p = y1p[:, :2, 0] / y1p[:, 2, 0][..., None]
# ------------------------------
# Get sift points for the second image
x2 = kp[jj]
# # DEBUG ------------------------------
# # Check if the image projections make sense
# draw_val_res(
# img[ii],
# img[jj],
# x1, x1p, np.random.rand(x1.shape[0]) < 0.1,
# (img[ii][0].shape[1] - 1.0) * 0.5,
# (img[ii][0].shape[0] - 1.0) * 0.5,
# parse_geom(geom, geom_type)["K"][ii, 0, 0],
# (img[jj][0].shape[1] - 1.0) * 0.5,
# (img[jj][0].shape[0] - 1.0) * 0.5,
# parse_geom(geom, geom_type)["K"][jj, 0, 0],
# "./debug_imgs/",
# "debug_img{:04d}.png".format(idx)
# )
# ------------------------------
# create x1, y1, x2, y2 as a matrix combo
x1mat = np.repeat(x1[:, 0][..., None], len(x2), axis=-1)
y1mat = np.repeat(x1[:, 1][..., None], len(x2), axis=1)
x1pmat = np.repeat(x1p[:, 0][..., None], len(x2), axis=-1)
y1pmat = np.repeat(x1p[:, 1][..., None], len(x2), axis=1)
x2mat = np.repeat(x2[:, 0][None], len(x1), axis=0)
y2mat = np.repeat(x2[:, 1][None], len(x1), axis=0)
# Load precomputed nearest neighbors
idx_sort = loadh5(os.path.join(
dump_dir, "idx_sort-{}-{}.h5".format(ii, jj)))["idx_sort"]
# Move back to tuples
idx_sort = (idx_sort[0], idx_sort[1])
x1mat = x1mat[idx_sort]
y1mat = y1mat[idx_sort]
x1pmat = x1pmat[idx_sort]
y1pmat = y1pmat[idx_sort]
x2mat = x2mat[idx_sort]
y2mat = y2mat[idx_sort]
# Turn into x1, x1p, x2
x1 = np.concatenate(
[x1mat.reshape(-1, 1), y1mat.reshape(-1, 1)], axis=1)
x1p = np.concatenate(
[x1pmat.reshape(-1, 1),
y1pmat.reshape(-1, 1)], axis=1)
x2 = np.concatenate(
[x2mat.reshape(-1, 1), y2mat.reshape(-1, 1)], axis=1)
# make xs in NHWC
xs += [
np.concatenate([x1, x2], axis=1).T.reshape(4, 1, -1).transpose(
(1, 2, 0))
]
# ------------------------------
# Get the geodesic distance using with x1, x2, dR, dt
if config.obj_geod_type == "sampson":
geod_d = get_sampsons(x1, x2, dR, dt)
elif config.obj_geod_type == "episqr":
geod_d = get_episqr(x1, x2, dR, dt)
elif config.obj_geod_type == "episym":
geod_d = get_episym(x1, x2, dR, dt)
# Get *rough* reprojection errors. Note that the depth may be noisy. We
# ended up not using this...
reproj_d = np.sum((x2 - x1p)**2, axis=1)
# count inliers and outliers
total_num += len(geod_d)
good_num += np.sum((geod_d < config.obj_geod_th))
bad_num += np.sum((geod_d >= config.obj_geod_th))
ys += [np.stack([geod_d, reproj_d], axis=1)]
# Save R, t for evaluation
Rs += [np.array(dR).reshape(3, 3)]
# normalize t before saving
dtnorm = np.sqrt(np.sum(dt**2))
assert (dtnorm > 1e-5)
dt /= dtnorm
ts += [np.array(dt).flatten()]
# Save img1 and img2 for display
img1s += [img[ii]]
img2s += [img[jj]]
cx = (img[ii][0].shape[1] - 1.0) * 0.5
cy = (img[ii][0].shape[0] - 1.0) * 0.5
# Correct coordinates using K
cx += parse_geom(geom, geom_type)["K"][ii, 0, 2]
cy += parse_geom(geom, geom_type)["K"][ii, 1, 2]
fx = parse_geom(geom, geom_type)["K"][ii, 0, 0]
fy = parse_geom(geom, geom_type)["K"][ii, 1, 1]
if np.isclose(fx, fy):
f = fx
else:
f = (fx, fy)
cx1s += [cx]
cy1s += [cy]
f1s += [f]
cx = (img[jj][0].shape[1] - 1.0) * 0.5
cy = (img[jj][0].shape[0] - 1.0) * 0.5
# Correct coordinates using K
cx += parse_geom(geom, geom_type)["K"][jj, 0, 2]
cy += parse_geom(geom, geom_type)["K"][jj, 1, 2]
fx = parse_geom(geom, geom_type)["K"][jj, 0, 0]
fy = parse_geom(geom, geom_type)["K"][jj, 1, 1]
if np.isclose(fx, fy):
f = fx
else:
f = (fx, fy)
cx2s += [cx]
cy2s += [cy]
f2s += [f]
# Do *not* convert to numpy arrays, as the number of keypoints may differ
# now. Simply return it
print(".... done")
if total_num > 0:
print(" Good pairs = {}, Total pairs = {}, Ratio = {}".format(
good_num, total_num, float(good_num) / float(total_num)))
print(" Bad pairs = {}, Total pairs = {}, Ratio = {}".format(
bad_num, total_num, float(bad_num) / float(total_num)))
res_dict = {}
res_dict["xs"] = xs
res_dict["ys"] = ys
res_dict["Rs"] = Rs
res_dict["ts"] = ts
res_dict["img1s"] = img1s
res_dict["cx1s"] = cx1s
res_dict["cy1s"] = cy1s
res_dict["f1s"] = f1s
res_dict["img2s"] = img2s
res_dict["cx2s"] = cx2s
res_dict["cy2s"] = cy2s
res_dict["f2s"] = f2s
return res_dict
print("-------------------------DUMP-------------------------")
print("Note: dump_data.py will only work on the first dataset")
# Read conditions
crop_center = config.data_crop_center
data_folder = config.data_dump_prefix
if config.use_lift:
data_folder += "_lift"
# Prepare opencv
print("Creating Opencv SIFT instance")
if not config.use_lift:
sift = cv2.xfeatures2d.SIFT_create(
nfeatures=config.obj_num_kp, contrastThreshold=1e-5)
# Now start data prep
print("Preparing data for {}".format(config.data_tr.split(".")[0]))
for _set in ["train", "valid", "test"]:
num_sample = getattr(
config, "train_max_{}_sample".format(_set[:2]))
# Load the data
print("Loading Raw Data for {}".format(_set))
if _set == "valid":
split = "val"
else:
split = _set
img, geom, vis, depth, kp, desc = loadFromDir(
getattr(config, "data_dir_" + _set[:2]) + split + "/",
"-16x16",
bUseColorImage=True,
crop_center=crop_center,
load_lift=config.use_lift)
if len(kp) == 0:
kp = [None] * len(img)
if len(desc) == 0:
desc = [None] * len(img)
z = [None] * len(img)
# Generating all possible pairs
print("Generating list of all possible pairs for {}".format(_set))
pairs = []
for ii, jj in itertools.product(xrange(len(img)), xrange(len(img))):
if ii != jj:
if vis[ii][jj] > getattr(config, "data_vis_th_" + _set[:2]):
pairs.append((ii, jj))
print("{} pairs generated".format(len(pairs)))
# Create data dump directory name
data_names = getattr(config, "data_" + _set[:2])
data_name = data_names.split(".")[0]
cur_data_folder = "/".join([
data_folder,
data_name,
"numkp-{}".format(config.obj_num_kp),
"nn-{}".format(config.obj_num_nn),
])
if not config.data_crop_center:
cur_data_folder = os.path.join(cur_data_folder, "nocrop")
if not os.path.exists(cur_data_folder):
os.makedirs(cur_data_folder)
suffix = "{}-{}".format(
_set[:2], getattr(config, "train_max_" + _set[:2] + "_sample"))
cur_folder = os.path.join(cur_data_folder, suffix)
if not os.path.exists(cur_folder):
os.makedirs(cur_folder)
# Check if we've done this folder already.
print(" -- Waiting for the data_folder to be ready")
ready_file = os.path.join(cur_folder, "ready")
if not os.path.exists(ready_file):
print(" -- No ready file {}".format(ready_file))
print(" -- Generating data")
# Make xy for this pair
data_dict = make_xy(
num_sample, pairs, kp, z, desc,
img, geom, vis, depth, getattr(
config, "data_geom_type_" + _set[:2]),
cur_folder)
# Let's pickle and save data. Note that I'm saving them
# individually. This was to have flexibility, but not so much
# necessary.
for var_name in data_dict:
cur_var_name = var_name + "_" + _set[:2]
out_file_name = os.path.join(cur_folder, cur_var_name) + ".pkl"
with open(out_file_name, "wb") as ofp:
pickle.dump(data_dict[var_name], ofp)
# Mark ready
with open(ready_file, "w") as ofp:
ofp.write("This folder is ready\n")
else:
print("Done!")
#
# dump_data.py ends here