forked from OpenGVLab/Hulk
-
Notifications
You must be signed in to change notification settings - Fork 1
/
inference_model.py
415 lines (371 loc) · 17.9 KB
/
inference_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import re
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import yaml
from dict_recursive_update import recursive_update
from easydict import EasyDict as edict
from PIL import Image
from torchvision import transforms
import core.models.backbones as backbones
import core.models.decoders as decoders
import core.models.input_adapter as input_adapter
import core.models.necks as necks
import core.models.output_projector as output_projector
from core.config_inference import Config_Hulk
from core.models.model_entry import aio_entry_v2mae_shareneck
from core.utils import NestedTensor
from draw_utils import draw_pose_from_cords, mmpose_to_coco
loader = yaml.SafeLoader
loader.add_implicit_resolver(
u'tag:yaml.org,2002:float',
re.compile(u'''^(?:
[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|\\.[0-9_]+(?:[eE][-+][0-9]+)?
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
|[-+]?\\.(?:inf|Inf|INF)
|\\.(?:nan|NaN|NAN))$''', re.X),
list(u'-+0123456789.'))
def count_parameters_num(model):
count = 0
count_fc = 0
param_dict = {name: param for name, param in model.named_parameters()}
param_keys = param_dict.keys()
for m_name, m in model.named_modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.SyncBatchNorm):
weight_name = m_name + '.weight'
bias_name = m_name + '.bias'
if weight_name in param_keys:
temp_params = param_dict[weight_name]
count += temp_params.data.nelement()
if bias_name in param_keys:
temp_params = param_dict[bias_name]
count += temp_params.data.nelement()
elif isinstance(m, nn.Linear):
weight_name = m_name + '.weight'
bias_name = m_name + '.bias'
if weight_name in param_keys:
temp_params = param_dict[weight_name]
count_fc += temp_params.data.nelement()
if bias_name in param_keys:
temp_params = param_dict[bias_name]
count_fc += temp_params.data.nelement()
print('Number of conv/bn params: %.2fM' % (count / 1e6))
print('Number of linear params: %.2fM' % (count_fc / 1e6))
def create_model(config, device):
patch_adapter_module = input_adapter.patchembed_entry(config.patch_adapter)
label_adapter_module = input_adapter.patchembed_entry(config.label_adapter)
# build backbone
backbone_module = backbones.backbone_entry(config.backbone)
count_parameters_num(backbone_module)
config.patch_neck.kwargs.backbone = backbone_module
patch_neck_module = necks.neck_entry(config.patch_neck)
config.label_neck.kwargs.backbone = backbone_module
label_neck_module = necks.neck_entry(config.label_neck)
# build decoder(s)
config.decoder.kwargs.backbone = backbone_module
config.decoder.kwargs.neck = patch_neck_module
config.decoder.kwargs.patch_adapter = patch_adapter_module
config.decoder.kwargs.label_adapter = label_adapter_module
config.decoder.kwargs.patch_neck = patch_neck_module
config.decoder.kwargs.label_neck = label_neck_module
# dataset = datasets.dataset_entry(config.dataset)
if config.dataset.type == "COCOStuffSegDatasetDev":
config.decoder.kwargs.ignore_value = config.dataset.kwargs.cfg.ignore_value
config.decoder.kwargs.num_classes = config.dataset.kwargs.cfg.num_classes
elif config.dataset.type in ["COCOPosDatasetDev", "MultiPoseDatasetDev", 'MPIIPosDatasetDev']:
num_classes = 2 # COCO: ['person'] + ['__background__']
config.decoder.kwargs.num_classes = num_classes if config.dataset.type != 'MPIIPosDatasetDev' else 16
config.decoder.kwargs.ignore_value = None
elif "ParsingDataset" in config.dataset.type:
config.decoder.kwargs.ignore_value = config.dataset.kwargs.cfg.ignore_value
config.decoder.kwargs.num_classes = config.dataset.kwargs.cfg.num_classes
elif config.dataset.type in ['MultiAttrDataset', 'mmSkeletonDataset']:
config.decoder.kwargs.ignore_value = None
# compatablity fix, will be removed, not effective
config.decoder.kwargs.num_classes = 0
elif config.dataset.type in ["PedestrainDetectionDataset_v2", 'CrowdHumanDetDataset', "PedestrainDetectionDataset_v2demo"]:
config.decoder.kwargs.ignore_value = None
# treat pedestrain classificatin as a binary classification
config.decoder.kwargs.num_classes = 1
elif config.dataset.type in ['CocoCaption', 'CocoCaptiondemo']:
config.decoder.kwargs.ignore_value = None
config.decoder.kwargs.num_classes = 1
elif config.dataset.type in ["MeshTSVYamlDataset"]:
config.decoder.kwargs.ignore_value = None
config.decoder.kwargs.num_classes = 1 # No class required
else:
raise NotImplementedError
config.decoder.kwargs.ginfo = None
config.decoder.kwargs.bn_group = None
decoder_module = decoders.decoder_entry(config.decoder)
# build output project using the setting of corresponding input adapters
patch_proj_kwargs_dict = {'kwargs': {'hidden_dim': config.decoder.kwargs.transformer_predictor_cfg.hidden_dim,
'patch_size': patch_adapter_module.patch_size,
'in_chans': patch_adapter_module.in_chans,
'stride_level': patch_adapter_module.stride_level, }
}
patch_proj_loss_cfg_kwargs_dict = {'kwargs': {
'patch_size': patch_adapter_module.patch_size[0],
'stride': patch_adapter_module.stride_level,
}}
# rgb branch has a default kwargs - extra_norm_pix_loss,
# use recursive_update to update other kwargs.
recursive_update(config.patch_proj, patch_proj_kwargs_dict)
recursive_update(config.patch_proj.kwargs.loss_cfg,
patch_proj_loss_cfg_kwargs_dict)
patch_proj_module = output_projector.outputproj_entry(config.patch_proj)
label_proj_kwargs_dict = {
'kwargs': {'hidden_dim': config.decoder.kwargs.transformer_predictor_cfg.hidden_dim,
'patch_size': label_adapter_module.patch_size,
'in_chans': label_adapter_module.in_chans,
'stride_level': label_adapter_module.stride_level,
'loss_cfg':
{'kwargs':
{'patch_size': label_adapter_module.patch_size[0],
'stride': label_adapter_module.stride_level,
}},
}
}
recursive_update(config.label_proj, label_proj_kwargs_dict)
label_proj_module = output_projector.outputproj_entry(config.label_proj)
modalities = {
'patch': config.patch_adapter.type.split('_adapter')[0],
'label': config.label_adapter.type.replace('_adapter', ''),
}
is_training = config.get('is_training', False)
backbone_module.training = \
patch_neck_module.training = \
label_neck_module.training = \
decoder_module.training = \
patch_adapter_module.training = \
label_adapter_module.training = \
patch_proj_module.training = \
label_proj_module.training = is_training
# build model
model = aio_entry_v2mae_shareneck(backbone_module,
patch_neck_module,
label_neck_module,
decoder_module,
patch_adapter_module,
label_adapter_module,
patch_proj_module,
label_proj_module,
modalities,
config.get('model_entry_kwargs', {}),)
model.training = is_training
return model
def module_compare(module_list):
for i, j in zip(module_list[0].state_dict(), module_list[1].state_dict()):
if module_list[0].state_dict()[i].size() != module_list[1].state_dict()[i].size():
print(module_list[0].state_dict()[i].size(),
module_list[1].state_dict()[i].size())
print(i)
def transform_image(input_image, transform, device):
img = transform(input_image)
img = img.unsqueeze(0).to(device)
return img
class HumanHulk:
def __init__(self,
device,
pose_active=True,
parse_active=True,
caption_active=False,
margin=10):
self.device = device
self.margin = margin
self.pose_active = pose_active
self.parse_active = parse_active
self.caption_active = caption_active
config = './experiments/release/custom_config.yaml'
# DETECT
path_detect = 'checkpoints/ckpt_task4_iter_newest.pth.tar'
self.det_model = self.load_model(config, path_detect, 0)
self.det_transform = transforms.Compose([
transforms.PILToTensor(),
])
# POSE
if pose_active:
path_pose = 'checkpoints/ckpt_task8_iter_newest.pth.tar'
self.pose_model = self.load_model(config, path_pose, 1)
self.pose_transform = transforms.Compose([
transforms.Resize((256, 192)),
transforms.PILToTensor(),
])
self.flip_pairs = [(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12),
(13, 14), (15, 16)]
# PARSE
if parse_active:
path_parse = 'checkpoints/ckpt_task18_iter_newest.pth.tar'
self.parse_model = self.load_model(config, path_parse, 2)
CIHP_palette = np.array([[0, 0, 0],
[128, 0, 0],
[255, 0, 0],
[0, 85, 0],
[170, 0, 51],
[255, 85, 0],
[0, 0, 85],
[0, 119, 221],
[85, 85, 0],
[0, 85, 85],
[85, 51, 0],
[52, 86, 128],
[0, 128, 0],
[0, 0, 255],
[51, 170, 221],
[0, 255, 255],
[85, 255, 170],
[170, 255, 85],
[255, 255, 0],
[255, 170, 0]])
self.palette = CIHP_palette.flatten().tolist()
self.parse_transform = transforms.Compose([
transforms.Resize((480, 480)),
transforms.PILToTensor(),
])
# CAPTION
if caption_active:
from transformers import BertTokenizer
path_caption = 'checkpoints/ckpt_task7_iter_newest.pth.tar'
self.caption_model = self.load_model(config, path_caption, 3)
self.tokenizer = BertTokenizer.from_pretrained(
'./experiments/release/bert-base-uncased/', do_lower=True)
self.caption_transform = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
])
def load_model(self, config, checkpoint_path, task_idx):
C_hulk = Config_Hulk(config, task_idx=task_idx, noginfo=True)
C_hulk.config['common']['model_entry_kwargs']['test_flag'] = C_hulk.config['common']['model_entry_kwargs']['test_flag'][task_idx]
config = edict(C_hulk.config['common'])
model = create_model(config, self.device)
pose_ckpt = torch.load(checkpoint_path, map_location=self.device)
pose_ckpt = pose_ckpt['state_dict']
for key in list(pose_ckpt.keys()):
pose_ckpt[key[7:]] = pose_ckpt.pop(key)
model.load_state_dict(pose_ckpt)
model.to(self.device)
return model
def set_image(self, img_path, max_size=1024):
self.img = Image.open(img_path).convert('RGB')
self.source_W, self.source_H = self.img.size
if self.source_W > max_size or self.source_H > max_size:
if self.source_W > self.source_H:
self.W = max_size
self.H = self.source_H*max_size//self.source_W
elif self.source_W < self.source_H:
self.H = max_size
self.W = self.source_W*max_size//self.source_H
else:
self.H = max_size
self.W = max_size
self.img = self.img.resize((self.W, self.H))
self.resized = True
else:
self.W = self.source_W
self.H = self.source_H
self.resized = False
self.box, self.detected_human = self.get_detection()
if self.box is not None:
if self.resized:
box = self.box*[self.source_W/self.W, self.source_W /
self.W, self.source_H/self.H, self.source_H/self.H]
else:
box = self.box
box = (np.int32(box)).tolist()[0]
else:
box = None
return box
def get_detection(self):
og_img = self.img.copy()
img = transform_image(self.img, self.det_transform, self.device)
mask = torch.zeros(1, self.H, self.W).to(self.device).to(bool)
sparse_labeling = torch.zeros(1, 3, 2, 867, 1).to(self.device)
orig_size = torch.tensor([[self.H, self.W]]).to(self.device)
img = NestedTensor(img, mask=mask)
input_img = edict(image=img,
sparse_labeling=sparse_labeling,
orig_size=orig_size)
output = self.det_model(input_img, 0)
threshold = 0.5
det_idx = (output['pred'][0]['scores'] >
threshold).nonzero(as_tuple=True)
det_idx = det_idx[0]
if det_idx.shape[0] == 0:
det_idx = [0]
return None, None
boxes = output['pred'][0]['boxes'][det_idx].cpu().detach()
boxes[:, :2] -= self.margin
boxes[:, 2:4] += self.margin
boxes[:, :2][boxes[:, :2] < 0] = 0
boxes[:, 2][boxes[:, 2] > self.W] = self.W
boxes[:, 3][boxes[:, 3] > self.H] = self.H
boxes = boxes.numpy()
boxes = np.int32(boxes)
cropped_img = og_img.crop(boxes[0])
return boxes, cropped_img
def get_pose(self, img_path, radius=3):
assert self.pose_active, '2D pose model has not been loaded, load it first'
assert self.detected_human is not None or self.box is not None, 'Human not detected, try another image'
img = transform_image(self.detected_human, self.pose_transform, self.device)
cW, cH = self.detected_human.size
center = [cW/2, cH/2]
scale = [cW/200, cH/200]
input_img = edict(image=img,
img_metas=[edict(
data=edict(
flip_pairs=self.flip_pairs,
center=center,
scale=scale,
image_file=img_path
))])
output = self.pose_model(input_img, 0)
keypoints = mmpose_to_coco(output['preds'])
keypoints[:,:2] += self.box[0][:2][::-1]
if self.resized:
keypoints[:,:2] = keypoints[:,:2] * \
[self.source_W/self.W, self.source_H/self.H]
radius = int(radius*self.source_W/self.W)
keypoints[:, :2] = np.int32(keypoints[:,:2])
pose = draw_pose_from_cords(
keypoints, (self.source_H, self.source_W), radius=radius, draw_bones=True)
pose = Image.fromarray(pose)
keypoints = keypoints.tolist()
return keypoints, pose
def get_parse(self):
assert self.parse_active, 'CIHP Parse model has not been loaded, load it first'
assert self.detected_human is not None or self.box is not None, 'Human not detected, try another image'
cW, cH = self.detected_human.size
img = transform_image(self.detected_human, self.parse_transform, self.device)
input_img = edict(image=img,
height=torch.tensor([cH]), width=torch.tensor([cW]))
output = self.parse_model(input_img, 0)
parse = output['pred'][0]['sem_seg']
zeros = torch.zeros((1, 20, self.H, self.W))
zeros[:, :, self.box[0][1]:self.box[0][3],
self.box[0][0]:self.box[0][2]] = parse
if self.resized:
zeros = F.interpolate(
zeros, (self.source_H, self.source_W), mode='bilinear', align_corners=False
)
zeros = zeros.squeeze(0)
zeros = torch.argmax(zeros, dim=0)
img = Image.fromarray(np.uint8(zeros))
img.putpalette(self.palette)
return img
def get_caption(self):
assert self.caption_active, 'Caption model has not been loaded, load it first'
assert self.detected_human is not None or self.box is not None, 'Human not detected, try another image'
img = transform_image(self.detected_human, self.caption_transform, self.device)
max_words = 40
caption_id = torch.zeros((1, max_words), dtype=torch.int32)
token_type_id = torch.zeros((1, max_words), dtype=torch.int32)
caption_pad_mask = torch.zeros((1, max_words), dtype=torch.int32)
input = edict(image=img, input_id=caption_id,
token_type_id=token_type_id, padding_mask=caption_pad_mask)
output = self.caption_model(input, 0)
output = self.tokenizer.decode(output['pred'].squeeze(
0).tolist(), skip_special_tokens=True)
return output